Skip to main content

Welkom bij Scalda & Bohn Stafleu van Loghum

Scalda heeft ervoor gezorgd dat je Mijn BSL eenvoudig en snel kunt raadplegen.Je kunt de producten hieronder links aanschaffen en rechts inloggen.

Registreer

Schaf de BSL Academy aan: 

BSL Academy mbo AG

Eenmaal aangeschaft kun je thuis, of waar ook ter wereld toegang krijgen tot Mijn BSL.

Heb je een vraag, neem dan contact op met Jan van der Velden.

Login

Als u al geregistreerd bent, hoeft u alleen maar in te loggen om onbeperkt toegang te krijgen tot Mijn BSL.

Top

2024 | OriginalPaper | Hoofdstuk

10. Complicaties en andere gevolgen van mechanische beademing

Auteur : Hans ter Haar

Gepubliceerd in: Mechanische beademing op de intensive care

Uitgeverij: Bohn Stafleu van Loghum

share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Samenvatting

In combinatie met de onderliggende ziekte kan mechanische beademing het functioneren van organen en het verloop van processen op diverse manieren beïnvloeden. De circulatie en perfusie van organen en weefsels worden beïnvloed door een verandering van het hartminuutvolume, door veneuze stuwing, afgenomen lymfedrainage en de vasoactieve eigenschappen van kooldioxide en zuurstof. Bovendien treedt vochtretentie op door het effect van mechanische beademing op diverse hormonale regelsystemen en kunnen inflammatoire mediatoren het immuunsysteem zodanig activeren dat dit tot schade aan de longen en andere organen leidt. Het gebruik van zuurstof kent bijwerkingen, evenals de aanwezigheid van een interface en de medicatie die gebruikt wordt om mechanische beademing te faciliteren; ten slotte kan mechanische beademing de slaapkwaliteit beïnvloeden.
Literatuur
1.
go back to reference Luce JM. The cardiovascular effects of mechanical ventilation and positive end-expiratory pressure. JAMA. 1984;252:807–11.PubMedCrossRef Luce JM. The cardiovascular effects of mechanical ventilation and positive end-expiratory pressure. JAMA. 1984;252:807–11.PubMedCrossRef
2.
go back to reference Pinsky MR. Cardiovascular issues in respiratory care. Chest. 2005;128:592–7.CrossRef Pinsky MR. Cardiovascular issues in respiratory care. Chest. 2005;128:592–7.CrossRef
3.
go back to reference Repessé X, Vieillard-Baron A, Geri G. Value of measuring esophageal pressure to evaluate heart-lung interactions-applications for invasive hemodynamic monitoring. Ann Transl Med. 2018;6(18):351.PubMedPubMedCentralCrossRef Repessé X, Vieillard-Baron A, Geri G. Value of measuring esophageal pressure to evaluate heart-lung interactions-applications for invasive hemodynamic monitoring. Ann Transl Med. 2018;6(18):351.PubMedPubMedCentralCrossRef
4.
go back to reference Scharf SM, Caldini P, Ingram RH Jr. Cardiovascular effects of increasing airway pressure in the dog. Am J Physiol. 1977;232:35–43. Scharf SM, Caldini P, Ingram RH Jr. Cardiovascular effects of increasing airway pressure in the dog. Am J Physiol. 1977;232:35–43.
5.
go back to reference Vieillard-Baron A, Loubieres Y, Schmitt JM, et al. Cyclic changes in right ventricular output impedance during mechanical ventilation. J Appl Physiol. 1999;87:1644–50.PubMedCrossRef Vieillard-Baron A, Loubieres Y, Schmitt JM, et al. Cyclic changes in right ventricular output impedance during mechanical ventilation. J Appl Physiol. 1999;87:1644–50.PubMedCrossRef
6.
go back to reference Repessé X, Charron C, Vieillard-Baron A. Acute cor pulmonale in ARDS. Rationale for protecting the right ventricle. Chest. 2015;147(1):259–65. Repessé X, Charron C, Vieillard-Baron A. Acute cor pulmonale in ARDS. Rationale for protecting the right ventricle. Chest. 2015;147(1):259–65.
7.
go back to reference Calvin JE, Quinn B. Right ventricular pressure overload during acute lung injury: cardiac mechanics and the pathophysiology of right ventricular systolic dysfunction. J Crit Care. 1989;4:251–65.CrossRef Calvin JE, Quinn B. Right ventricular pressure overload during acute lung injury: cardiac mechanics and the pathophysiology of right ventricular systolic dysfunction. J Crit Care. 1989;4:251–65.CrossRef
8.
go back to reference Jacob R, Dierberger B, Kissling G. Functional significance of the Frank-Starling mechanism under physiological and pathophysiological conditions. Eur Heart J. 1992;13(suppl E):7–14.PubMedCrossRef Jacob R, Dierberger B, Kissling G. Functional significance of the Frank-Starling mechanism under physiological and pathophysiological conditions. Eur Heart J. 1992;13(suppl E):7–14.PubMedCrossRef
9.
go back to reference Fougeres E, Teboul JL, Richard C, et al. Hemodynamic impact of a positive end-expiratory pressure setting in acute respiratory distress syndrome: importance of the volume status. Critical Care Med. 2010;38(3):802–7.CrossRef Fougeres E, Teboul JL, Richard C, et al. Hemodynamic impact of a positive end-expiratory pressure setting in acute respiratory distress syndrome: importance of the volume status. Critical Care Med. 2010;38(3):802–7.CrossRef
10.
go back to reference Sarge T, Loring SH, Yitsak-Sade M, et al. Raising positive end-expiratory pressures in ARDS to achieve a positive transpulmonary pressure does not cause hemodynamic compromise. Intensive Care Med. 2014;40:126–8.PubMedCrossRef Sarge T, Loring SH, Yitsak-Sade M, et al. Raising positive end-expiratory pressures in ARDS to achieve a positive transpulmonary pressure does not cause hemodynamic compromise. Intensive Care Med. 2014;40:126–8.PubMedCrossRef
11.
go back to reference Schmitt JM, Vieillard-Baron A, Augarde R, et al. Positive endexpiratory pressure titration in acute respiratory distress syndrome patients: impact on right ventricular outflow impedance evaluated by pulmonary artery Doppler flow velocity measurements. Crit Care Med. 2001;29:1154–8.PubMedCrossRef Schmitt JM, Vieillard-Baron A, Augarde R, et al. Positive endexpiratory pressure titration in acute respiratory distress syndrome patients: impact on right ventricular outflow impedance evaluated by pulmonary artery Doppler flow velocity measurements. Crit Care Med. 2001;29:1154–8.PubMedCrossRef
12.
go back to reference Ranieri VM, Giuliani R, Mascia L, et al. Patient-ventilator interaction during acute hypercapnia: pressure-support vs. proportional-assist ventilation. J Appl Physiol. 1996;81:426–36. Ranieri VM, Giuliani R, Mascia L, et al. Patient-ventilator interaction during acute hypercapnia: pressure-support vs. proportional-assist ventilation. J Appl Physiol. 1996;81:426–36.
13.
go back to reference Mitaka C, Nagura T, Sakanishi N, et al. Two-dimensional echocardiographic evaluation of inferior vena cava, right ventricle, and left ventricle during positive-pressure ventilation with varying levels of positive end-expiratory pressure. Crit Care Med. 1989;17:205–10.PubMedCrossRef Mitaka C, Nagura T, Sakanishi N, et al. Two-dimensional echocardiographic evaluation of inferior vena cava, right ventricle, and left ventricle during positive-pressure ventilation with varying levels of positive end-expiratory pressure. Crit Care Med. 1989;17:205–10.PubMedCrossRef
14.
go back to reference Rudiger A, Singer M. Mechanism of sepsis-induced cardiac dysfunction. Crit Care Med. 2007;35:1599–608.PubMedCrossRef Rudiger A, Singer M. Mechanism of sepsis-induced cardiac dysfunction. Crit Care Med. 2007;35:1599–608.PubMedCrossRef
15.
go back to reference Rohn DA, Stewart RH, Elk JR, et al. Renal lymphatic function following venous pressure elevation. Lymphology. 1996;29:67–75.PubMed Rohn DA, Stewart RH, Elk JR, et al. Renal lymphatic function following venous pressure elevation. Lymphology. 1996;29:67–75.PubMed
16.
go back to reference Moriondo A, Mukenge S, Negrini D. Transmural pressure in rat initial subpleural lymphatics during spontaneous or mechanical ventilation. Am J Physiol Heart Circ Physiol. 2005;289:H263–9.PubMedCrossRef Moriondo A, Mukenge S, Negrini D. Transmural pressure in rat initial subpleural lymphatics during spontaneous or mechanical ventilation. Am J Physiol Heart Circ Physiol. 2005;289:H263–9.PubMedCrossRef
17.
go back to reference Szabo G, Magyar Z. Effect of increased systemic venous pressure on lymph pressure and flow. Am J Physiol. 1967;212:1469–74.PubMedCrossRef Szabo G, Magyar Z. Effect of increased systemic venous pressure on lymph pressure and flow. Am J Physiol. 1967;212:1469–74.PubMedCrossRef
18.
go back to reference Frostell C, Blomqvist H, Hedenstierna G, et al. Thoracic and abdominal lymph drainage in relation to mechanical ventilation and PEEP. Acta Anaesthesiol Scand. 1987;31:405–12.PubMedCrossRef Frostell C, Blomqvist H, Hedenstierna G, et al. Thoracic and abdominal lymph drainage in relation to mechanical ventilation and PEEP. Acta Anaesthesiol Scand. 1987;31:405–12.PubMedCrossRef
19.
go back to reference Cui Y, Urschel JD, Petrelli NJ. The effect of cardiopulmonary lymphatic obstruction on heart and lung function. Thorac Cardiovasc Surg. 2001;49:35–40.PubMedCrossRef Cui Y, Urschel JD, Petrelli NJ. The effect of cardiopulmonary lymphatic obstruction on heart and lung function. Thorac Cardiovasc Surg. 2001;49:35–40.PubMedCrossRef
20.
go back to reference Malbrain ML, Pelosi P, De laet I, et al. Lymphatic drainage between thorax and abdomen: please take good care of this well-performing machinery. Acta Clin Belg. 2007;62 Suppl 1:152–61. Malbrain ML, Pelosi P, De laet I, et al. Lymphatic drainage between thorax and abdomen: please take good care of this well-performing machinery. Acta Clin Belg. 2007;62 Suppl 1:152–61.
21.
go back to reference Satta A, Contu B, Branca GF, et al. Importance of liver interstitial pressure on sodium retention. Nephron. 1988;49:190–6.PubMedCrossRef Satta A, Contu B, Branca GF, et al. Importance of liver interstitial pressure on sodium retention. Nephron. 1988;49:190–6.PubMedCrossRef
22.
go back to reference Shear W, Rosner MH. Acute kidney dysfunction secondary to the abdominal compartment syndrome. J Nephrol. 2006;19:556–65.PubMed Shear W, Rosner MH. Acute kidney dysfunction secondary to the abdominal compartment syndrome. J Nephrol. 2006;19:556–65.PubMed
23.
go back to reference Somers VK, Mark AL, Zavala DC, Abboud FM. Contrasting effects of hypoxia and hypercapnia on ventilation and sympathetic activity in humans. J Appl Physiol. 1989;67(5):2101–6.PubMedCrossRef Somers VK, Mark AL, Zavala DC, Abboud FM. Contrasting effects of hypoxia and hypercapnia on ventilation and sympathetic activity in humans. J Appl Physiol. 1989;67(5):2101–6.PubMedCrossRef
24.
go back to reference Mekontso-Dessap AM, Charron C, Devaquet J, et al. Impact of acute hypercapnia and augmented positive end-expiratory pressure on right ventricle function in severe acute respiratory distress syndrome. Intensive Care Med. 2009;35:1850–8.PubMedPubMedCentralCrossRef Mekontso-Dessap AM, Charron C, Devaquet J, et al. Impact of acute hypercapnia and augmented positive end-expiratory pressure on right ventricle function in severe acute respiratory distress syndrome. Intensive Care Med. 2009;35:1850–8.PubMedPubMedCentralCrossRef
25.
go back to reference Moudgil R, Michelakis ED, Archer SL. Hypoxic pulmonary vasoconstriction. J Appl Physiol. 2005;98:390–403.PubMedCrossRef Moudgil R, Michelakis ED, Archer SL. Hypoxic pulmonary vasoconstriction. J Appl Physiol. 2005;98:390–403.PubMedCrossRef
26.
go back to reference Lhéritier G, Legras A, Caille A, et al. Prevalence and prognostic value of acute cor pulmonale and patent foramen ovale in ventilated patients with early acute respiratory distress syndrome: a multicenter study. Intensive Care Med. 2013;39(10):1734–42.PubMedCrossRef Lhéritier G, Legras A, Caille A, et al. Prevalence and prognostic value of acute cor pulmonale and patent foramen ovale in ventilated patients with early acute respiratory distress syndrome: a multicenter study. Intensive Care Med. 2013;39(10):1734–42.PubMedCrossRef
27.
go back to reference Burnum JF, Hickam JB, McIntosh HD. The effect of hypocapnie on arterial blood pressure. Circulation. 1954;9:89–95.PubMedCrossRef Burnum JF, Hickam JB, McIntosh HD. The effect of hypocapnie on arterial blood pressure. Circulation. 1954;9:89–95.PubMedCrossRef
28.
go back to reference McNulty PH, King N, Scott S, et al. Effects of supplemental oxygen administration on coronary blood flow in patients undergoing cardiac catheterization. Heart Circ Physiol. 2005;288(3):H1057–62.CrossRef McNulty PH, King N, Scott S, et al. Effects of supplemental oxygen administration on coronary blood flow in patients undergoing cardiac catheterization. Heart Circ Physiol. 2005;288(3):H1057–62.CrossRef
29.
go back to reference Annat G, Viale JP, Bui Xuan B, et al. Effect of PEEP ventilation on renal function, plasma renin, aldosterone, neurophysins and urinary ADH, and prostaglandins. Anesthesiology. 1983;58:136–41.PubMedCrossRef Annat G, Viale JP, Bui Xuan B, et al. Effect of PEEP ventilation on renal function, plasma renin, aldosterone, neurophysins and urinary ADH, and prostaglandins. Anesthesiology. 1983;58:136–41.PubMedCrossRef
30.
go back to reference Kilburn KH, Dowell AR. Renal function in respiratory failure. Effects of hypoxia, hyperoxia, and hypercapnia. Arch Intern Med. 1971;127(4):754–62. Kilburn KH, Dowell AR. Renal function in respiratory failure. Effects of hypoxia, hyperoxia, and hypercapnia. Arch Intern Med. 1971;127(4):754–62.
32.
go back to reference Brezis M, Rosen S. Hypoxia of the renal medulla: its implications for disease. N Engl J Med. 1995;332:647–55.PubMedCrossRef Brezis M, Rosen S. Hypoxia of the renal medulla: its implications for disease. N Engl J Med. 1995;332:647–55.PubMedCrossRef
33.
go back to reference Brienza N, Revelly JP, Ayuse T, Robotham JL. Effects of PEEP on liver arterial and venous blood flows. Am J Respir Crit Care Med. 1995;152:504–10.PubMedCrossRef Brienza N, Revelly JP, Ayuse T, Robotham JL. Effects of PEEP on liver arterial and venous blood flows. Am J Respir Crit Care Med. 1995;152:504–10.PubMedCrossRef
34.
go back to reference Winso O, Biber B, Gustavsson B, et al. Portal blood flow in man during graded positive end-expiratory pressure ventilation. Intensive Care Med. 1986;12:80–5.PubMedCrossRef Winso O, Biber B, Gustavsson B, et al. Portal blood flow in man during graded positive end-expiratory pressure ventilation. Intensive Care Med. 1986;12:80–5.PubMedCrossRef
35.
go back to reference Mutlu GM, Mutlu EA, Factor P. GI complications in patients receiving mechanical ventilation. Chest. 2001;119:1222–41.PubMedCrossRef Mutlu GM, Mutlu EA, Factor P. GI complications in patients receiving mechanical ventilation. Chest. 2001;119:1222–41.PubMedCrossRef
36.
go back to reference Kiefer P, Nunes S, Kosonen P, Takala J. Effect of an acute increase in Pco2 on splanchnic perfusion and metabolism. Intensive Care Med. 2001;27:775–8.PubMedCrossRef Kiefer P, Nunes S, Kosonen P, Takala J. Effect of an acute increase in Pco2 on splanchnic perfusion and metabolism. Intensive Care Med. 2001;27:775–8.PubMedCrossRef
37.
go back to reference Welsh DA, Summer WR, deBloisblanc B, et al. Hemodynamic consequences of mechanical ventilation. Clin Pulm Med. 1999;6:52–65.CrossRef Welsh DA, Summer WR, deBloisblanc B, et al. Hemodynamic consequences of mechanical ventilation. Clin Pulm Med. 1999;6:52–65.CrossRef
38.
go back to reference Love R, Choe E, Lippton H, et al. Positive end-expiratory pressure decreases mesenteric blood flow despite normalization of cardiac output. J Trauma. 1995;39:195–9.PubMedCrossRef Love R, Choe E, Lippton H, et al. Positive end-expiratory pressure decreases mesenteric blood flow despite normalization of cardiac output. J Trauma. 1995;39:195–9.PubMedCrossRef
39.
go back to reference Bion JF, et al. Multiple organ failure. In: Webb AR, Shapiro MJ, Singer M, et al., editors. Oxford textbook of critical care. New York: Oxford University Press; 1999. p. 923–6. Bion JF, et al. Multiple organ failure. In: Webb AR, Shapiro MJ, Singer M, et al., editors. Oxford textbook of critical care. New York: Oxford University Press; 1999. p. 923–6.
40.
go back to reference Edouard AR, Degrémont A-C, Duranteau J, et al. Heterogenous regional vascular responses to simulated transient hypovolemia in man. Intensive Care Med. 1994;20:414–20.PubMedCrossRef Edouard AR, Degrémont A-C, Duranteau J, et al. Heterogenous regional vascular responses to simulated transient hypovolemia in man. Intensive Care Med. 1994;20:414–20.PubMedCrossRef
41.
go back to reference Haglund U, et al. The gastrointestinal and hepatic systems: normal physiology; the gastrointestinal system. In: Webb AR, Shapiro MJ, Singer M, et al., editors. Oxford textbook of critical care. New York: Oxford University Press; 1999. p. 297–300. Haglund U, et al. The gastrointestinal and hepatic systems: normal physiology; the gastrointestinal system. In: Webb AR, Shapiro MJ, Singer M, et al., editors. Oxford textbook of critical care. New York: Oxford University Press; 1999. p. 297–300.
42.
go back to reference Peura DA, Johnson LF. Cimetidine for prevention and treatment of gastroduodenal mucosal lesions in patients in an ICUs. Ann Intern Med. 1985;103:173–7.PubMedCrossRef Peura DA, Johnson LF. Cimetidine for prevention and treatment of gastroduodenal mucosal lesions in patients in an ICUs. Ann Intern Med. 1985;103:173–7.PubMedCrossRef
43.
go back to reference Dark DS, Pingleton SK. Nonhemorrhagic gastrointestinal complications in acute respiratory failure. Crit Care Med. 1989;17:755–8.PubMedCrossRef Dark DS, Pingleton SK. Nonhemorrhagic gastrointestinal complications in acute respiratory failure. Crit Care Med. 1989;17:755–8.PubMedCrossRef
44.
go back to reference Savoca PE, Longo WE, Pasternak B, et al. Does visceral ischemia play a role in the pathogenesis of acute acalculous cholecystitis? J Clin Gastroenterol. 1990;12:33–6.PubMedCrossRef Savoca PE, Longo WE, Pasternak B, et al. Does visceral ischemia play a role in the pathogenesis of acute acalculous cholecystitis? J Clin Gastroenterol. 1990;12:33–6.PubMedCrossRef
45.
go back to reference Spain DA, Kawabe T, Keelan PC, et al. Decreaseda-adrenergic response in the intestinal microcirculation after ‘two-hit’ hemorrhage/resuscitation and bacteremia. J Surg Res. 1999;84:180–5.PubMedCrossRef Spain DA, Kawabe T, Keelan PC, et al. Decreaseda-adrenergic response in the intestinal microcirculation after ‘two-hit’ hemorrhage/resuscitation and bacteremia. J Surg Res. 1999;84:180–5.PubMedCrossRef
47.
go back to reference McHenry LC Jr, West JW, Cooper ES, et al. Cerebral autoregulation in man. Stroke. 1974;5:695–706.PubMedCrossRef McHenry LC Jr, West JW, Cooper ES, et al. Cerebral autoregulation in man. Stroke. 1974;5:695–706.PubMedCrossRef
48.
go back to reference Paulson OB, Strandgaard S, Edvinsson L. Cerebral autoregulation. Cerebrovasc Brain Metab Rev. 1990;2(2):161–92.PubMed Paulson OB, Strandgaard S, Edvinsson L. Cerebral autoregulation. Cerebrovasc Brain Metab Rev. 1990;2(2):161–92.PubMed
49.
go back to reference Frost EA. Effects of positive end-expiratory pressure on intracranial pressure and compliance in brain-injured patients. J Neurosurg. 1977;47:195–200.PubMedCrossRef Frost EA. Effects of positive end-expiratory pressure on intracranial pressure and compliance in brain-injured patients. J Neurosurg. 1977;47:195–200.PubMedCrossRef
50.
go back to reference Andrews PJ. Pressure, flow and Occam’s razor: a matter of ‘steal’? Intensive Care Med. 2005;31:323–4.PubMedCrossRef Andrews PJ. Pressure, flow and Occam’s razor: a matter of ‘steal’? Intensive Care Med. 2005;31:323–4.PubMedCrossRef
51.
go back to reference Caricato A, Conti G, Della CF, et al. Effects of PEEP on the intracranial system of patients with head injury and subarachnoid hemorrhage: the role of respiratory system compliance. J Trauma. 2005;58:571–6.PubMedCrossRef Caricato A, Conti G, Della CF, et al. Effects of PEEP on the intracranial system of patients with head injury and subarachnoid hemorrhage: the role of respiratory system compliance. J Trauma. 2005;58:571–6.PubMedCrossRef
52.
go back to reference Huynh T, Messer M, Sing RF, et al. Positive end-expiratory pressure alters intracranial and cerebral perfusion pressure in severe traumatic brain injury. J Trauma. 2002;53:488–92.PubMedCrossRef Huynh T, Messer M, Sing RF, et al. Positive end-expiratory pressure alters intracranial and cerebral perfusion pressure in severe traumatic brain injury. J Trauma. 2002;53:488–92.PubMedCrossRef
53.
54.
go back to reference Masamoto K, Tanishita K. Oxygen transport in brain tissue. J Biomech Eng. 2009;131:74–82.CrossRef Masamoto K, Tanishita K. Oxygen transport in brain tissue. J Biomech Eng. 2009;131:74–82.CrossRef
55.
go back to reference Coles JP, Fryer TD, Coleman MR, et al. Hyperventilation following head injury: effect on ischemic burden and cerebral oxidative metabolism. Crit Care Med. 2007;35(2):568–78.PubMedCrossRef Coles JP, Fryer TD, Coleman MR, et al. Hyperventilation following head injury: effect on ischemic burden and cerebral oxidative metabolism. Crit Care Med. 2007;35(2):568–78.PubMedCrossRef
56.
go back to reference Foundation The Brain Trauma. The American Association of Neurological Surgeons. The Joint Section on Neurotrauma and Critical Care. Critical pathway for the treatment of established intracranial hypertension. J Neurotrauma. 2000;17:537–8. Foundation The Brain Trauma. The American Association of Neurological Surgeons. The Joint Section on Neurotrauma and Critical Care. Critical pathway for the treatment of established intracranial hypertension. J Neurotrauma. 2000;17:537–8.
57.
go back to reference Lowe GJ, Ferguson ND. Lung-protective ventilation in neurosurgical patients. Curr Opin Crit Care. 2006;12:3–7.PubMedCrossRef Lowe GJ, Ferguson ND. Lung-protective ventilation in neurosurgical patients. Curr Opin Crit Care. 2006;12:3–7.PubMedCrossRef
58.
go back to reference Levine S, Nguyen T, Taylor N, et al. Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med. 2008;358(13):1327–35.PubMedCrossRef Levine S, Nguyen T, Taylor N, et al. Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med. 2008;358(13):1327–35.PubMedCrossRef
59.
go back to reference Jaber S, Petrof BJ, Jung B, et al. Rapidly progressive diaphragmatic weakness and injury during mechanical ventilation in humans. Am J Respir Crit Care Med. 2011;183:364–71.PubMedCrossRef Jaber S, Petrof BJ, Jung B, et al. Rapidly progressive diaphragmatic weakness and injury during mechanical ventilation in humans. Am J Respir Crit Care Med. 2011;183:364–71.PubMedCrossRef
60.
go back to reference Laghi F, Cattapan SE, Jubran A, et al. Is weaning failure caused by low-frequency fatigue of the diaphragm? Am J Respir Crit Care Med. 2003;167:120–7.PubMedCrossRef Laghi F, Cattapan SE, Jubran A, et al. Is weaning failure caused by low-frequency fatigue of the diaphragm? Am J Respir Crit Care Med. 2003;167:120–7.PubMedCrossRef
61.
go back to reference Garnacho-Montero J, Madrazo-Osuna J, Garcia-Garmendia JL, et al. Critical illness polyneuropathy: risk factors and clinical consequences. A cohort study in septic patients. Intensive Care Med. 2001;27:1288–96. Garnacho-Montero J, Madrazo-Osuna J, Garcia-Garmendia JL, et al. Critical illness polyneuropathy: risk factors and clinical consequences. A cohort study in septic patients. Intensive Care Med. 2001;27:1288–96.
62.
go back to reference De Jonghe B, Sharshar T, Lefaucheur JP, et al. Paresis acquired in the intensive care unit: a prospective multicenter study. JAMA. 2002;288:2859–67.PubMedCrossRef De Jonghe B, Sharshar T, Lefaucheur JP, et al. Paresis acquired in the intensive care unit: a prospective multicenter study. JAMA. 2002;288:2859–67.PubMedCrossRef
63.
go back to reference De Jonghe B, Bastuji-Garin S, Durand MC, et al. Respiratory weakness is associated with limb weakness and delayed weaning in critical illness. Crit Care Med. 2007;35(9):2007–15.PubMedCrossRef De Jonghe B, Bastuji-Garin S, Durand MC, et al. Respiratory weakness is associated with limb weakness and delayed weaning in critical illness. Crit Care Med. 2007;35(9):2007–15.PubMedCrossRef
65.
go back to reference Latronico N, Fenzi F, Recupero D, et al. Critical illness myopathy and neuropathy. Lancet. 1996;347:1579–82.PubMedCrossRef Latronico N, Fenzi F, Recupero D, et al. Critical illness myopathy and neuropathy. Lancet. 1996;347:1579–82.PubMedCrossRef
66.
go back to reference Sharshar T, Bastuji-Garin S, Stevens RD, et al. Presence and severity of intensive care unit-acquired paresis at time of awakening are associated with increased intensive care unit and hospital mortality. Crit Care Med. 2009;37(12):3047–53.PubMedCrossRef Sharshar T, Bastuji-Garin S, Stevens RD, et al. Presence and severity of intensive care unit-acquired paresis at time of awakening are associated with increased intensive care unit and hospital mortality. Crit Care Med. 2009;37(12):3047–53.PubMedCrossRef
67.
go back to reference Herridge MS, Tansey CM, Matte A, et al. Functional disability 5 years after acute respiratory distress syndrome. N Engl J Med. 2011;364(14):1293–304.PubMedCrossRef Herridge MS, Tansey CM, Matte A, et al. Functional disability 5 years after acute respiratory distress syndrome. N Engl J Med. 2011;364(14):1293–304.PubMedCrossRef
68.
go back to reference Macklin MT, Macklin CC. Malignant interstitial emphysema of the lungs and mediastinum as an important occult complication in many respiratory diseases and other conditions: an interpretation of the clinical literature in the light of laboratory experiment. Medicine. 1944;23:281–358.CrossRef Macklin MT, Macklin CC. Malignant interstitial emphysema of the lungs and mediastinum as an important occult complication in many respiratory diseases and other conditions: an interpretation of the clinical literature in the light of laboratory experiment. Medicine. 1944;23:281–358.CrossRef
69.
go back to reference Webb HH, Tierney DF. Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures: protection by positive endexpiratory pressure. Am Rev Respir Dis. 1974;110:556–65.PubMed Webb HH, Tierney DF. Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures: protection by positive endexpiratory pressure. Am Rev Respir Dis. 1974;110:556–65.PubMed
70.
go back to reference Dreyfuss D, Basset G, Soler P, Saumon G. Intermittent positive-pressure hyperventilation with high inflation pressures produces pulmonary microvascular injury in rats. Am Rev Respir Dis. 1985;132:880–4.PubMed Dreyfuss D, Basset G, Soler P, Saumon G. Intermittent positive-pressure hyperventilation with high inflation pressures produces pulmonary microvascular injury in rats. Am Rev Respir Dis. 1985;132:880–4.PubMed
71.
go back to reference Tremblay L, Valenza F, Ribeiro SP, et al. Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J Clin Invest. 1997;99:944–52.PubMedPubMedCentralCrossRef Tremblay L, Valenza F, Ribeiro SP, et al. Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J Clin Invest. 1997;99:944–52.PubMedPubMedCentralCrossRef
72.
go back to reference Cabrera-Benítez NE, Parotto M, Post M, et al. Mechanical stress induces lung fibrosis by epithelial-mesenchymal transition. Crit Care Med. 2012;40:510–7.PubMedPubMedCentralCrossRef Cabrera-Benítez NE, Parotto M, Post M, et al. Mechanical stress induces lung fibrosis by epithelial-mesenchymal transition. Crit Care Med. 2012;40:510–7.PubMedPubMedCentralCrossRef
73.
go back to reference Dreyfuss D, Soler P, Basset G, Saumon G. High inflation pressure pulmonary edema: respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis. 1988;137:1159–64.PubMedCrossRef Dreyfuss D, Soler P, Basset G, Saumon G. High inflation pressure pulmonary edema: respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis. 1988;137:1159–64.PubMedCrossRef
74.
go back to reference Mascheroni D, Kolobow T, Fumagalli R, et al. Acute respiratory failure following pharmacologically induced hyperventilation: an experimental animal study. Intensive Care Med. 1988;15:8–14.PubMedCrossRef Mascheroni D, Kolobow T, Fumagalli R, et al. Acute respiratory failure following pharmacologically induced hyperventilation: an experimental animal study. Intensive Care Med. 1988;15:8–14.PubMedCrossRef
75.
go back to reference Slutsky AS. Lung injury caused by mechanical ventilation. Chest. 1999;116(1 Suppl):9-15S.CrossRef Slutsky AS. Lung injury caused by mechanical ventilation. Chest. 1999;116(1 Suppl):9-15S.CrossRef
76.
go back to reference Mead J, Takishima T, Leith D. Stress distribution in lungs: a model of pulmonary elasticity. J Appl Physiol. 1970;28:596–608.PubMedCrossRef Mead J, Takishima T, Leith D. Stress distribution in lungs: a model of pulmonary elasticity. J Appl Physiol. 1970;28:596–608.PubMedCrossRef
77.
go back to reference Webb HH, Tierney DF. Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures: protection by positive end expiratory pressure. Am Rev Respir Dis. 1974;110:556–65.PubMed Webb HH, Tierney DF. Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures: protection by positive end expiratory pressure. Am Rev Respir Dis. 1974;110:556–65.PubMed
78.
go back to reference Protti A, Andreis DT, Monti M, et al. Lung stress and strain during mechanical ventilation: any difference between statics and dynamics? Crit Care Med. 2013;41(4):1046–55.PubMedCrossRef Protti A, Andreis DT, Monti M, et al. Lung stress and strain during mechanical ventilation: any difference between statics and dynamics? Crit Care Med. 2013;41(4):1046–55.PubMedCrossRef
79.
go back to reference Gattinoni L, Carlesso E, Cadringher P, et al. Physical and biological triggers of ventilator-induced lung injury and its prevention. Eur Respir J Suppl. 2003;47:15–25s.CrossRef Gattinoni L, Carlesso E, Cadringher P, et al. Physical and biological triggers of ventilator-induced lung injury and its prevention. Eur Respir J Suppl. 2003;47:15–25s.CrossRef
80.
go back to reference Chiumello D, Carlesso E, Cadringher P, et al. Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome. Am J Respir Crit Care Med. 2008;178:346–55.PubMedCrossRef Chiumello D, Carlesso E, Cadringher P, et al. Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome. Am J Respir Crit Care Med. 2008;178:346–55.PubMedCrossRef
81.
go back to reference Mauri T, Yoshida T, Bellani G, et al. Esophageal and transpulmonary pressure in the clinical setting: meaning, usefulness and perspectives. Intensive Care Med. 2016;42:1360–73.PubMedCrossRef Mauri T, Yoshida T, Bellani G, et al. Esophageal and transpulmonary pressure in the clinical setting: meaning, usefulness and perspectives. Intensive Care Med. 2016;42:1360–73.PubMedCrossRef
82.
go back to reference Pelosi P, Goldner M, McKibben A, et al. Recruitment and derecruitment during acute respiratory failure: an experimental study. Am J Respir Crit Care Med. 2001;164:122–30.PubMedCrossRef Pelosi P, Goldner M, McKibben A, et al. Recruitment and derecruitment during acute respiratory failure: an experimental study. Am J Respir Crit Care Med. 2001;164:122–30.PubMedCrossRef
83.
go back to reference Gattinoni L, Chiumello D, Carlesso E, Valenza F. Bench-to-bedside review: chest wall elastance in acute lung injury/acute respiratory distress syndrome patients. Crit Care. 2004;8(5):350–5.PubMedPubMedCentralCrossRef Gattinoni L, Chiumello D, Carlesso E, Valenza F. Bench-to-bedside review: chest wall elastance in acute lung injury/acute respiratory distress syndrome patients. Crit Care. 2004;8(5):350–5.PubMedPubMedCentralCrossRef
84.
go back to reference Gattinoni L, Pelosi P, Suter PM, et al. Acute respiratory distress syndrome caused by pulmonary and extrapulmonary disease. Different syndromes? Am J Respir Cit Care Med. 1998;158:3–11. Gattinoni L, Pelosi P, Suter PM, et al. Acute respiratory distress syndrome caused by pulmonary and extrapulmonary disease. Different syndromes? Am J Respir Cit Care Med. 1998;158:3–11.
85.
86.
go back to reference Syndrome NTARD. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1301–8.CrossRef Syndrome NTARD. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1301–8.CrossRef
87.
go back to reference Serpa Neto A, Cardoso SO, Manetta JA, et al. Association between use of lungprotective ventilation with lower tidal volumes and clinical outcomes among patients without acute respiratory distress syndrome: a meta-analysis. JAMA. 2012;308:1651–9.PubMedCrossRef Serpa Neto A, Cardoso SO, Manetta JA, et al. Association between use of lungprotective ventilation with lower tidal volumes and clinical outcomes among patients without acute respiratory distress syndrome: a meta-analysis. JAMA. 2012;308:1651–9.PubMedCrossRef
88.
go back to reference Gogniat E, Madorno M, Rodriguez PO, et al. Dynamic relative regional lung strain estimated by electrical impedance tomography in an experimental model of ARDS. Respir Care. 2022;67(8):906–13.PubMedCrossRef Gogniat E, Madorno M, Rodriguez PO, et al. Dynamic relative regional lung strain estimated by electrical impedance tomography in an experimental model of ARDS. Respir Care. 2022;67(8):906–13.PubMedCrossRef
89.
go back to reference Cressoni M, Gotti M, Chiurazzi C, et al. Mechanical power and development of ventilator-induced lung injury. Anesthesiology. 2016;124:1100–8.PubMedCrossRef Cressoni M, Gotti M, Chiurazzi C, et al. Mechanical power and development of ventilator-induced lung injury. Anesthesiology. 2016;124:1100–8.PubMedCrossRef
90.
go back to reference Gattinoni L, Tonetti T, Cressoni M, et al. Ventilator-related causes of lung injury: the mechanical power. Intensive Care Med. 2016;42:1567–75.PubMedCrossRef Gattinoni L, Tonetti T, Cressoni M, et al. Ventilator-related causes of lung injury: the mechanical power. Intensive Care Med. 2016;42:1567–75.PubMedCrossRef
91.
go back to reference Guérin L, Papazian L, Reignier J, et al. Effect of driving pressure on mortality in ARDS patients during lungprotective mechanical ventilation in two randomized controlled trials. Crit Care. 2016;20:384.PubMedPubMedCentralCrossRef Guérin L, Papazian L, Reignier J, et al. Effect of driving pressure on mortality in ARDS patients during lungprotective mechanical ventilation in two randomized controlled trials. Crit Care. 2016;20:384.PubMedPubMedCentralCrossRef
92.
go back to reference Serpa Neto A, Deliberato RO, Johnson AEW, et al. Mechanical power of ventilation is associated with mortality in critical ill patients: an analysis of patients in two observational cohorts. Intensive Care Med. 2018;44:1914–22.PubMedCrossRef Serpa Neto A, Deliberato RO, Johnson AEW, et al. Mechanical power of ventilation is associated with mortality in critical ill patients: an analysis of patients in two observational cohorts. Intensive Care Med. 2018;44:1914–22.PubMedCrossRef
93.
go back to reference Parhar KKS, Zjadewicz K, Soo A, et al. Epidemiology, mechanical power, and 3-year outcomes in acute respiratory distress syndrome patients using standardized screening. An observational cohort study. Ann Am Thorac Soc. 2019;16(10):1263–72. Parhar KKS, Zjadewicz K, Soo A, et al. Epidemiology, mechanical power, and 3-year outcomes in acute respiratory distress syndrome patients using standardized screening. An observational cohort study. Ann Am Thorac Soc. 2019;16(10):1263–72.
94.
go back to reference Vaporidi K, Voloudakis G, Priniannakis G, et al. Effects of respiratory rate on ventilator-induced lung injury at a constant PaCO2 in a mouse model of normal lung. Crit Care Med. 2008;36(4):1277–83.PubMedCrossRef Vaporidi K, Voloudakis G, Priniannakis G, et al. Effects of respiratory rate on ventilator-induced lung injury at a constant PaCO2 in a mouse model of normal lung. Crit Care Med. 2008;36(4):1277–83.PubMedCrossRef
95.
go back to reference Conrad SA, Zhang S, Arnold TC, et al. Protective effects of low respiratory frequency in experimental ventilator-associated lung injury. Crit Care Med. 2005;33(4):835–40.PubMedCrossRef Conrad SA, Zhang S, Arnold TC, et al. Protective effects of low respiratory frequency in experimental ventilator-associated lung injury. Crit Care Med. 2005;33(4):835–40.PubMedCrossRef
96.
go back to reference Brochard L, Slutsky A, Pesenti A. Mechanical ventilation to minimize progression of lung injury in acute respiratory failure. Am J Respir Crit Care Med. 2017;195(4):438–42.PubMedCrossRef Brochard L, Slutsky A, Pesenti A. Mechanical ventilation to minimize progression of lung injury in acute respiratory failure. Am J Respir Crit Care Med. 2017;195(4):438–42.PubMedCrossRef
97.
go back to reference Yoshida T, Uchiyama A, Fujino Y. The role of spontaneous effort during mechanical ventilation: normal lung versus injured lung. J Intensive Care. 2015;3:18.PubMedPubMedCentralCrossRef Yoshida T, Uchiyama A, Fujino Y. The role of spontaneous effort during mechanical ventilation: normal lung versus injured lung. J Intensive Care. 2015;3:18.PubMedPubMedCentralCrossRef
98.
go back to reference Rodrigues A, Telias I, Damiani LF, Brochard L. Reverse triggering during controlled ventilation. Am J Resp Crit Care Med. 2023;207(5):533–43.PubMedCrossRef Rodrigues A, Telias I, Damiani LF, Brochard L. Reverse triggering during controlled ventilation. Am J Resp Crit Care Med. 2023;207(5):533–43.PubMedCrossRef
99.
go back to reference Bertoni M, Telias I, Urner M, et al. A novel non-invasive method to detect excessively high respiratory effort and dynamic transpulmonary driving pressure during mechanical ventilation. Crit Care. 2019;23:346.PubMedPubMedCentralCrossRef Bertoni M, Telias I, Urner M, et al. A novel non-invasive method to detect excessively high respiratory effort and dynamic transpulmonary driving pressure during mechanical ventilation. Crit Care. 2019;23:346.PubMedPubMedCentralCrossRef
100.
go back to reference Kavanagh BP, Laffey JG. Hypercapnia: permissive and therapeutic. Minerva Anestesiol. 2006;72:567–76.PubMed Kavanagh BP, Laffey JG. Hypercapnia: permissive and therapeutic. Minerva Anestesiol. 2006;72:567–76.PubMed
102.
go back to reference Slutsky AS, Tremblay LN. Multiple system organ failure: is mechanical ventilation a contributing factor? Am J Respir Crit Care Med. 1998;157:1721–5.PubMedCrossRef Slutsky AS, Tremblay LN. Multiple system organ failure: is mechanical ventilation a contributing factor? Am J Respir Crit Care Med. 1998;157:1721–5.PubMedCrossRef
103.
go back to reference Ranieri VM, Giunta F, Suter PM, Slutsky AS. Mechanical ventilation as a mediator of multisystem organ failure in acute respiratory distress syndrome. JAMA. 2000;284:43–4.PubMedCrossRef Ranieri VM, Giunta F, Suter PM, Slutsky AS. Mechanical ventilation as a mediator of multisystem organ failure in acute respiratory distress syndrome. JAMA. 2000;284:43–4.PubMedCrossRef
104.
go back to reference Imai Y, Parodo J, Kajikawa O, et al. Injurous mechanical ventilation and end-organ epithelial cell apoptosis and organ dysfunction in an experimental model of acute respiratory distress syndrome. JAMA. 2003;289:2104–12.PubMedCrossRef Imai Y, Parodo J, Kajikawa O, et al. Injurous mechanical ventilation and end-organ epithelial cell apoptosis and organ dysfunction in an experimental model of acute respiratory distress syndrome. JAMA. 2003;289:2104–12.PubMedCrossRef
105.
go back to reference Priestley J. The Discovery of Oxygen, Part 1. Experiments by Joseph Priestly, LLD. (1775). Chicago: Albembic Club Reprints: University of Chicago Press; 1912, pag. 53–4. Priestley J. The Discovery of Oxygen, Part 1. Experiments by Joseph Priestly, LLD. (1775). Chicago: Albembic Club Reprints: University of Chicago Press; 1912, pag. 53–4.
106.
go back to reference Kistler GS, Caldwell PRB, Weibel ER. Development of fine structural damage to alveolar and capillary lining cells in oxygen-poisoned rat lungs. J Cell Biol. 1967;32(3):605–28.PubMedPubMedCentralCrossRef Kistler GS, Caldwell PRB, Weibel ER. Development of fine structural damage to alveolar and capillary lining cells in oxygen-poisoned rat lungs. J Cell Biol. 1967;32(3):605–28.PubMedPubMedCentralCrossRef
107.
go back to reference Nash G, Bowen JA, Langlinais C. Respirator Lung: a misnomer. Arch Path. 1971;21:234–40. Nash G, Bowen JA, Langlinais C. Respirator Lung: a misnomer. Arch Path. 1971;21:234–40.
108.
go back to reference Freeman BA, Crapo JD. Hyperoxia increases oxygen radical production in rat lungs and lung mitochondria. J Biol Chem. 1981;256(21):10986–92.PubMedCrossRef Freeman BA, Crapo JD. Hyperoxia increases oxygen radical production in rat lungs and lung mitochondria. J Biol Chem. 1981;256(21):10986–92.PubMedCrossRef
109.
go back to reference Budinger GRS, Mutlu GM, Urich D, et al. Epithelial cell death is an important contributor to oxidant-mediated acute lung injury. Am J Respir Crit Care Med. 2011;183(8):1043–54.PubMedCrossRef Budinger GRS, Mutlu GM, Urich D, et al. Epithelial cell death is an important contributor to oxidant-mediated acute lung injury. Am J Respir Crit Care Med. 2011;183(8):1043–54.PubMedCrossRef
110.
go back to reference Sanz A, Stefanatos RK. The mitochondrial free radical theory of aging: a critical view. Curr Aging Sci. 2008;1(1):10–21.PubMedCrossRef Sanz A, Stefanatos RK. The mitochondrial free radical theory of aging: a critical view. Curr Aging Sci. 2008;1(1):10–21.PubMedCrossRef
111.
go back to reference Liu Y, Rosenthal RE, Haywood Y, et al. Normoxic ventilation after cardiac arrest reduces oxidation of brain lipids and improves neurological outcome. Stroke. 1998;29(8):1679–86.PubMedCrossRef Liu Y, Rosenthal RE, Haywood Y, et al. Normoxic ventilation after cardiac arrest reduces oxidation of brain lipids and improves neurological outcome. Stroke. 1998;29(8):1679–86.PubMedCrossRef
112.
go back to reference Hazelton JL, Balan I, Elmer GI, et al. Hyperoxic reperfusion after global cerebral ischemia promotes inflammation and long-term hippocampal neuronal death. J Neurotrauma. 2010;27(4):753–62.PubMedPubMedCentralCrossRef Hazelton JL, Balan I, Elmer GI, et al. Hyperoxic reperfusion after global cerebral ischemia promotes inflammation and long-term hippocampal neuronal death. J Neurotrauma. 2010;27(4):753–62.PubMedPubMedCentralCrossRef
113.
114.
go back to reference Santos C, Ferrer M, Roca J, et al. Pulmonary gas exchange response to oxygen breathing in acute lung injury. Am J Respir Crit Care Med. 2000;161(1):26–31.PubMedCrossRef Santos C, Ferrer M, Roca J, et al. Pulmonary gas exchange response to oxygen breathing in acute lung injury. Am J Respir Crit Care Med. 2000;161(1):26–31.PubMedCrossRef
115.
go back to reference Aboab J, Jonson B, Kouatchet A, et al. Effect of inspired oxygen fraction on alveolar derecruitment in acute respiratory distress syndrome. Intensive Care Med. 2006;32:1979–86.PubMedCrossRef Aboab J, Jonson B, Kouatchet A, et al. Effect of inspired oxygen fraction on alveolar derecruitment in acute respiratory distress syndrome. Intensive Care Med. 2006;32:1979–86.PubMedCrossRef
116.
go back to reference Panda AK, Nag K, Harbottle RR, et al. Effect of acute lung injury on structure and function of pulmonary surfactant films. Am J Respir Cell Mol Biol. 2004;30(641–6):50. Panda AK, Nag K, Harbottle RR, et al. Effect of acute lung injury on structure and function of pulmonary surfactant films. Am J Respir Cell Mol Biol. 2004;30(641–6):50.
117.
go back to reference Matalon S, Baker RR, Engstrom PC. Mechanisms and modifications of hyperoxic injury to the mammalian pulmonary surfactant system. In: Reinhart K, Eyrich K, editors. Clinical aspects of O2 transport and tissue oxygenation. New York: Springer-Verlag; 1989. p. 115–32.CrossRef Matalon S, Baker RR, Engstrom PC. Mechanisms and modifications of hyperoxic injury to the mammalian pulmonary surfactant system. In: Reinhart K, Eyrich K, editors. Clinical aspects of O2 transport and tissue oxygenation. New York: Springer-Verlag; 1989. p. 115–32.CrossRef
118.
go back to reference Griese M. Pulmonary surfactant in health and human lung diseases: state of the art. Eur Respir J. 1999;13:1455–76.PubMedCrossRef Griese M. Pulmonary surfactant in health and human lung diseases: state of the art. Eur Respir J. 1999;13:1455–76.PubMedCrossRef
119.
go back to reference Kilgannon JH, Jones AE, Shapiro NI, et al. Association between arterial hyperoxia following resuscitation from cardiac arrest and in-hospital mortality. JAMA. 2010;303(21):2165–71.PubMedCrossRef Kilgannon JH, Jones AE, Shapiro NI, et al. Association between arterial hyperoxia following resuscitation from cardiac arrest and in-hospital mortality. JAMA. 2010;303(21):2165–71.PubMedCrossRef
120.
go back to reference Branson RD, Robinson BRH. Oxygen: when is more the enemy of good? Intensive Care Med. 2011;37:1–3.PubMedCrossRef Branson RD, Robinson BRH. Oxygen: when is more the enemy of good? Intensive Care Med. 2011;37:1–3.PubMedCrossRef
121.
go back to reference Rivers E, Nguyen B, Havstad S, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345(19):1368–77.PubMedCrossRef Rivers E, Nguyen B, Havstad S, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345(19):1368–77.PubMedCrossRef
122.
go back to reference Sud S, Friedrich JO, Taccone P, et al. Prone ventilation reduces mortality in patients with acute respiratory failure and severe hypoxemia: systematic review and meta-analysis. Intensive Care Med. 2010;36(4):585–99.PubMedCrossRef Sud S, Friedrich JO, Taccone P, et al. Prone ventilation reduces mortality in patients with acute respiratory failure and severe hypoxemia: systematic review and meta-analysis. Intensive Care Med. 2010;36(4):585–99.PubMedCrossRef
123.
go back to reference Hodgson C, Golicher EC, Young ME, et al. Recruitment manoeuvres for adults with acute lung injury receiving mechanical ventilation (Review). Cochrane Database Syst Rev. 2009 Apr 15:(2):CD006667. Hodgson C, Golicher EC, Young ME, et al. Recruitment manoeuvres for adults with acute lung injury receiving mechanical ventilation (Review). Cochrane Database Syst Rev. 2009 Apr 15:(2):CD006667.
124.
go back to reference Neto AS, Pereira VGM, Espósito DC, et al. Neuromuscular blocking agents in patients with acute respiratory distress syndrome: a summary of the current evidence from three randomized controlled trials. Ann Intensive Care. 2012;2:33.PubMedPubMedCentralCrossRef Neto AS, Pereira VGM, Espósito DC, et al. Neuromuscular blocking agents in patients with acute respiratory distress syndrome: a summary of the current evidence from three randomized controlled trials. Ann Intensive Care. 2012;2:33.PubMedPubMedCentralCrossRef
125.
go back to reference Flemming DC. Hazards of tracheal intubation. In: Orkin FK, Cooperman LH, (Red.). Complications in Anaesthesiology. Philadelphia: JB Lippincott Co.; 1983. Flemming DC. Hazards of tracheal intubation. In: Orkin FK, Cooperman LH, (Red.). Complications in Anaesthesiology. Philadelphia: JB Lippincott Co.; 1983.
126.
go back to reference Griesdale DEG, Bosma TL, Kurth T, et al. Complications of endotracheal intubation in the critically ill. Intensive Care Med. 2008;34:1835–42.PubMedCrossRef Griesdale DEG, Bosma TL, Kurth T, et al. Complications of endotracheal intubation in the critically ill. Intensive Care Med. 2008;34:1835–42.PubMedCrossRef
127.
go back to reference Stauffer JL, Silvester RC. Complications of endotracheal intubation, tracheostomy, and artificial airways. Respir Care. 1982;27:417–34. Stauffer JL, Silvester RC. Complications of endotracheal intubation, tracheostomy, and artificial airways. Respir Care. 1982;27:417–34.
128.
go back to reference Dorsch JA, Dorsch SE. Understanding anaesthesia equipment: construction, care and complications. 3rd ed. Baltimore: Williams and Wilkins; 1994. Dorsch JA, Dorsch SE. Understanding anaesthesia equipment: construction, care and complications. 3rd ed. Baltimore: Williams and Wilkins; 1994.
129.
go back to reference Bernhard WN, Cottrell JE, Sivakumaran C, et al. Adjustment of intracuff pressure to prevent aspiration. Anesthesiology. 1979;50:363–6.PubMedCrossRef Bernhard WN, Cottrell JE, Sivakumaran C, et al. Adjustment of intracuff pressure to prevent aspiration. Anesthesiology. 1979;50:363–6.PubMedCrossRef
130.
go back to reference Seegobin RD, Van Hasselt GL. Endotracheal cuff pressure and tracheal mucosal blood flow: endoscopic study of effects of four large-volume cuffs. Br Med J. 1984;288:965–8.CrossRef Seegobin RD, Van Hasselt GL. Endotracheal cuff pressure and tracheal mucosal blood flow: endoscopic study of effects of four large-volume cuffs. Br Med J. 1984;288:965–8.CrossRef
131.
go back to reference Crimlisk JT, Horn MH, Wilson DJ, et al. Artificial airways: a survey of cuff management practices. Heart Lung. 1996;25:225–35.PubMedCrossRef Crimlisk JT, Horn MH, Wilson DJ, et al. Artificial airways: a survey of cuff management practices. Heart Lung. 1996;25:225–35.PubMedCrossRef
133.
go back to reference Freeman BD, Isabella K, Lin N, et al. A metaanalysis of prospective trials comparing percutaneous and surgical tracheostomy in critically ill patients. Chest. 2000;118:1412–8.PubMedCrossRef Freeman BD, Isabella K, Lin N, et al. A metaanalysis of prospective trials comparing percutaneous and surgical tracheostomy in critically ill patients. Chest. 2000;118:1412–8.PubMedCrossRef
134.
go back to reference Mehta S, Hill NS. Noninvasive ventilation: state of the art. Am J Respir Crit Care Med. 2001;163:540–77.PubMedCrossRef Mehta S, Hill NS. Noninvasive ventilation: state of the art. Am J Respir Crit Care Med. 2001;163:540–77.PubMedCrossRef
136.
go back to reference American Association for Respiratory Care, Restrepo RD, Walsh BK. Humidification during invasive and noninvasive mechanical ventilation 2012. Respir Care. 2012;57(5):782–8. American Association for Respiratory Care, Restrepo RD, Walsh BK. Humidification during invasive and noninvasive mechanical ventilation 2012. Respir Care. 2012;57(5):782–8.
137.
go back to reference Horan TC, Andrus M, Dudeck MA. CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. Am J Infect Control. 2008;36:309–32.PubMedCrossRef Horan TC, Andrus M, Dudeck MA. CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. Am J Infect Control. 2008;36:309–32.PubMedCrossRef
138.
go back to reference National Nosocomial Infections Surveillance System. National Nosocomial Infections Surveillance (NNIS) System Report, data summary from January 1992 through June 2004, issued October 2004. Am J Infect Control. 2004;32(8):470–85.CrossRef National Nosocomial Infections Surveillance System. National Nosocomial Infections Surveillance (NNIS) System Report, data summary from January 1992 through June 2004, issued October 2004. Am J Infect Control. 2004;32(8):470–85.CrossRef
139.
go back to reference Niederman M, Craven DE, Bonten MJ, et al. Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med. 2005;171:388–416.CrossRef Niederman M, Craven DE, Bonten MJ, et al. Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med. 2005;171:388–416.CrossRef
140.
go back to reference Melsen WG, Rovers MM, Bonten MJ. Ventilator-associated pneumonia and mortality: a systematic review of observational studies. Crit Care Med. 2009;37:2709–18.PubMed Melsen WG, Rovers MM, Bonten MJ. Ventilator-associated pneumonia and mortality: a systematic review of observational studies. Crit Care Med. 2009;37:2709–18.PubMed
141.
go back to reference Koulenti D, Lisboa T, Brun-Buisson C, et al. EU-VAP/CAP Study Group: spectrum of practice in the diagnosis of nosocomial pneumonia in patients requiring mechanical ventilation in European intensive care units. Crit Care Med. 2009;37:2360–8.PubMedCrossRef Koulenti D, Lisboa T, Brun-Buisson C, et al. EU-VAP/CAP Study Group: spectrum of practice in the diagnosis of nosocomial pneumonia in patients requiring mechanical ventilation in European intensive care units. Crit Care Med. 2009;37:2360–8.PubMedCrossRef
142.
go back to reference Stevens JP, Kachniarz B, Wright SB, et al. When policy gets it right: variability in U.S. hospitals’ diagnosis of ventilator-associated pneumonia. Crit Care Med. 2014;42:497–503. Stevens JP, Kachniarz B, Wright SB, et al. When policy gets it right: variability in U.S. hospitals’ diagnosis of ventilator-associated pneumonia. Crit Care Med. 2014;42:497–503.
143.
go back to reference Magill SS, Klompas M, Balk R, et al. Developing a new, national approach to surveillance for ventilator-associated events. Crit Care Med. 2013;41:2467–75.PubMedPubMedCentralCrossRef Magill SS, Klompas M, Balk R, et al. Developing a new, national approach to surveillance for ventilator-associated events. Crit Care Med. 2013;41:2467–75.PubMedPubMedCentralCrossRef
144.
go back to reference Babcock HM, Zack JE, Garrison T, et al. An educational intervention to reduce ventilator-associated pneumonia in an integrated health system. A comparison of effects Chest. 2004;125:2224–31.PubMed Babcock HM, Zack JE, Garrison T, et al. An educational intervention to reduce ventilator-associated pneumonia in an integrated health system. A comparison of effects Chest. 2004;125:2224–31.PubMed
145.
go back to reference Fernandez JF, Levine SM, Restrepo MI. Technologic advances in endotracheal tubes for prevention of ventilator-associated pneumonia. Chest. 2012;142(1):231–8.PubMedPubMedCentralCrossRef Fernandez JF, Levine SM, Restrepo MI. Technologic advances in endotracheal tubes for prevention of ventilator-associated pneumonia. Chest. 2012;142(1):231–8.PubMedPubMedCentralCrossRef
146.
go back to reference Stoller JK, Orens DK, Fatica C, et al. Weekly versus daily changes of in-line suction catheters: impact on rates of ventilator-associated pneumonia and associated costs. Respir Care. 2003;48(5):494–9.PubMed Stoller JK, Orens DK, Fatica C, et al. Weekly versus daily changes of in-line suction catheters: impact on rates of ventilator-associated pneumonia and associated costs. Respir Care. 2003;48(5):494–9.PubMed
147.
go back to reference Pandharipande P, Shintani A, Peterson J, et al. Lorazepam is an independent risk factor for transitioning to delirium in intensive care unit patients. Anesthesiology. 2006;104(1):21–6.PubMedCrossRef Pandharipande P, Shintani A, Peterson J, et al. Lorazepam is an independent risk factor for transitioning to delirium in intensive care unit patients. Anesthesiology. 2006;104(1):21–6.PubMedCrossRef
148.
go back to reference Strøm T, Martinussen T, Toft P. A protocol of no sedation for critically ill patients receiving mechanical ventilation: a randomised trial. Lancet. 2010;375(9713):475–80.PubMedCrossRef Strøm T, Martinussen T, Toft P. A protocol of no sedation for critically ill patients receiving mechanical ventilation: a randomised trial. Lancet. 2010;375(9713):475–80.PubMedCrossRef
149.
go back to reference Bauer TM, Ritz R, Haberthur C, et al. Prolonged sedation due to accumulation of conjugated metabolites of midazolam. Lancet. 1995;346:145–7.PubMedCrossRef Bauer TM, Ritz R, Haberthur C, et al. Prolonged sedation due to accumulation of conjugated metabolites of midazolam. Lancet. 1995;346:145–7.PubMedCrossRef
150.
go back to reference Jaarsma AS, Uges DRA. Propyleenglycol, een verraderlijk oplosmiddel in geneesmiddelen. Tijdschr Kindergeneeskund. 2001;69(4):94–7.CrossRef Jaarsma AS, Uges DRA. Propyleenglycol, een verraderlijk oplosmiddel in geneesmiddelen. Tijdschr Kindergeneeskund. 2001;69(4):94–7.CrossRef
151.
go back to reference Oto J, Yamamoto K, Koike S, et al. Effect of daily sedative interruption on sleep stages of mechanically ventilated patients receiving midazolam by infusion. Anaesth Intensive Care. 2011;39:392–400.PubMedCrossRef Oto J, Yamamoto K, Koike S, et al. Effect of daily sedative interruption on sleep stages of mechanically ventilated patients receiving midazolam by infusion. Anaesth Intensive Care. 2011;39:392–400.PubMedCrossRef
152.
go back to reference Sanchez-Izquierdo-Riera JA, Caballero-Cubedo RE, Perez-Vela JL, et al. Propofol versus midazolam: safety and efficacy for sedating the severe trauma patient. Anesth Analg. 1998;86(6):1219–24.PubMed Sanchez-Izquierdo-Riera JA, Caballero-Cubedo RE, Perez-Vela JL, et al. Propofol versus midazolam: safety and efficacy for sedating the severe trauma patient. Anesth Analg. 1998;86(6):1219–24.PubMed
153.
go back to reference Kondili E, Alexopoulou C, Xirouchaki N, Georgopoulos D. Effects of propofol on sleep quality in mechanically ventilated critically ill patients: a physiological study. Intensive Care Med. 2012;38:1640–6.PubMedCrossRef Kondili E, Alexopoulou C, Xirouchaki N, Georgopoulos D. Effects of propofol on sleep quality in mechanically ventilated critically ill patients: a physiological study. Intensive Care Med. 2012;38:1640–6.PubMedCrossRef
155.
go back to reference Cremer OL, Moons KGM, Bouman EAC, et al. Long-term propofol infusion and cardiac failure in adult head-injured patients. Lancet. 2001;357:117–8.PubMedCrossRef Cremer OL, Moons KGM, Bouman EAC, et al. Long-term propofol infusion and cardiac failure in adult head-injured patients. Lancet. 2001;357:117–8.PubMedCrossRef
156.
go back to reference O’Grady NP, Alexander M, Burns LA, et al. Guidelines for the prevention of intravascular catheter-related infections. Clin Inf Dis. 2011;52(9):1087–99.CrossRef O’Grady NP, Alexander M, Burns LA, et al. Guidelines for the prevention of intravascular catheter-related infections. Clin Inf Dis. 2011;52(9):1087–99.CrossRef
157.
go back to reference Chen K, Lu Z, Xin YC, et al. Alpha−2 agonists for long-term sedation during mechanical ventilation in critically ill patients. Cochrane Database Syst Rev. 2015;(1):CD010269. Chen K, Lu Z, Xin YC, et al. Alpha−2 agonists for long-term sedation during mechanical ventilation in critically ill patients. Cochrane Database Syst Rev. 2015;(1):CD010269.
158.
159.
go back to reference Smego RA Jr, Durack DT. The neuroleptic malignant syndrome. Arch Inter Med. 1982;142(6):1183–5.CrossRef Smego RA Jr, Durack DT. The neuroleptic malignant syndrome. Arch Inter Med. 1982;142(6):1183–5.CrossRef
160.
go back to reference Benyamin R, Trescot AM, Datta S, et al. Opioid complications and side effects. Pain Physician. 2008;11:S105–20.PubMedCrossRef Benyamin R, Trescot AM, Datta S, et al. Opioid complications and side effects. Pain Physician. 2008;11:S105–20.PubMedCrossRef
161.
go back to reference Kosten TR, O’Connor PG. Management of drug and alcohol withdrawal. N Engl J Med. 2003;348:1786–95.PubMedCrossRef Kosten TR, O’Connor PG. Management of drug and alcohol withdrawal. N Engl J Med. 2003;348:1786–95.PubMedCrossRef
162.
go back to reference Bennett S, Hurford WE. When should sedation or neuromuscular blockade be used during mechanical ventilation? Respir Care. 2011;56(2):168–76.PubMedCrossRef Bennett S, Hurford WE. When should sedation or neuromuscular blockade be used during mechanical ventilation? Respir Care. 2011;56(2):168–76.PubMedCrossRef
163.
go back to reference Leatherman JW, Fluegel WL, David WS, et al. Muscle weakness in mechanically ventilated patients with severe astma. Am J Respir Crit Care Med. 1996;153:1686–90.PubMedCrossRef Leatherman JW, Fluegel WL, David WS, et al. Muscle weakness in mechanically ventilated patients with severe astma. Am J Respir Crit Care Med. 1996;153:1686–90.PubMedCrossRef
164.
go back to reference David W, Roehr C, Leatherman J. EMG findings in acute myopathy with status asthmaticus, steroids and paralytics: clinical and electrophysiologic correlation. Electromyogr Clin Neurophysiol. 1998;3896:371–6. David W, Roehr C, Leatherman J. EMG findings in acute myopathy with status asthmaticus, steroids and paralytics: clinical and electrophysiologic correlation. Electromyogr Clin Neurophysiol. 1998;3896:371–6.
165.
go back to reference De Backer J, Hart N, Fan E. Neuromuscular blockade in the 21st century management of the critical ill patient. Chest. 2017;151(3):697–706.CrossRef De Backer J, Hart N, Fan E. Neuromuscular blockade in the 21st century management of the critical ill patient. Chest. 2017;151(3):697–706.CrossRef
166.
go back to reference Parthasarathy S, Tobin MJ. Sleep in the intensive care unit. Intensive Care Med. 2004;30:197–206.PubMedCrossRef Parthasarathy S, Tobin MJ. Sleep in the intensive care unit. Intensive Care Med. 2004;30:197–206.PubMedCrossRef
167.
go back to reference Rotondi AJ, Chelluri L, Sirio C, et al. Patients’ recollections of stressful experiences while receiving prolonged mechanical ventilation in an intensive care unit. Crit Care Med. 2002;30:746–52.PubMedCrossRef Rotondi AJ, Chelluri L, Sirio C, et al. Patients’ recollections of stressful experiences while receiving prolonged mechanical ventilation in an intensive care unit. Crit Care Med. 2002;30:746–52.PubMedCrossRef
168.
go back to reference Hardin KA. Sleep in the ICU: potential mechanisms and clinical implications. Chest. 2009;136:284–94.PubMedCrossRef Hardin KA. Sleep in the ICU: potential mechanisms and clinical implications. Chest. 2009;136:284–94.PubMedCrossRef
169.
go back to reference Fanfulla F, Ceriana P, D’Artavilla Lupo N, et al. Sleep disturbances in patients admitted to a step-down unit after ICU discharge: the role of mechanical ventilation. Sleep. 2011;34:355–62.PubMedPubMedCentralCrossRef Fanfulla F, Ceriana P, D’Artavilla Lupo N, et al. Sleep disturbances in patients admitted to a step-down unit after ICU discharge: the role of mechanical ventilation. Sleep. 2011;34:355–62.PubMedPubMedCentralCrossRef
170.
go back to reference Roche-Campo F, Thille AW, Drouot X, et al. Comparison of sleep quality with mechanical versus spontaneous ventilation during weaning of critically iII tracheostomized patients. Crit Care Med. 2013;41:1637–44.PubMedCrossRef Roche-Campo F, Thille AW, Drouot X, et al. Comparison of sleep quality with mechanical versus spontaneous ventilation during weaning of critically iII tracheostomized patients. Crit Care Med. 2013;41:1637–44.PubMedCrossRef
171.
go back to reference Toublanc B, Rose D, Glérant J-C, et al. Assist-control ventilation vs. low levels of pressure support ventilation on sleep quality in intubated ICU patients. Intensive Care Med. 2007;33:1148–54. Toublanc B, Rose D, Glérant J-C, et al. Assist-control ventilation vs. low levels of pressure support ventilation on sleep quality in intubated ICU patients. Intensive Care Med. 2007;33:1148–54.
172.
go back to reference Parthasarathy S, Tobin MJ. Effect of ventilator mode on sleep quality in critically ill patients. Am J Resp Crit Care Med. 2002;166:1423–9.PubMedCrossRef Parthasarathy S, Tobin MJ. Effect of ventilator mode on sleep quality in critically ill patients. Am J Resp Crit Care Med. 2002;166:1423–9.PubMedCrossRef
173.
go back to reference Bosma K, Ferreyra G, Ambrogio C, et al. Patient-ventilator interaction and sleep in mechanically ventilated patients: pressure support versus proportional assist ventilation. Crit Care Med. 2007;35:1048–54.PubMedCrossRef Bosma K, Ferreyra G, Ambrogio C, et al. Patient-ventilator interaction and sleep in mechanically ventilated patients: pressure support versus proportional assist ventilation. Crit Care Med. 2007;35:1048–54.PubMedCrossRef
174.
go back to reference Delisle S, Ouellet P, Bellemare P, et al. Sleep quality in mechanically ventilated patients: comparison between NAVA and PSV modes. Ann Intensive Care. 2011;1:42.PubMedPubMedCentralCrossRef Delisle S, Ouellet P, Bellemare P, et al. Sleep quality in mechanically ventilated patients: comparison between NAVA and PSV modes. Ann Intensive Care. 2011;1:42.PubMedPubMedCentralCrossRef
Metagegevens
Titel
Complicaties en andere gevolgen van mechanische beademing
Auteur
Hans ter Haar
Copyright
2024
Uitgeverij
Bohn Stafleu van Loghum
DOI
https://doi.org/10.1007/978-90-368-3031-7_10