Skip to main content

Welkom bij Scalda & Bohn Stafleu van Loghum

Scalda heeft ervoor gezorgd dat je Mijn BSL eenvoudig en snel kunt raadplegen.Je kunt de producten hieronder links aanschaffen en rechts inloggen.

Registreer

Schaf de BSL Academy aan: 

BSL Academy mbo AG

Eenmaal aangeschaft kun je thuis, of waar ook ter wereld toegang krijgen tot Mijn BSL.

Heb je een vraag, neem dan contact op met Jan van der Velden.

Login

Als u al geregistreerd bent, hoeft u alleen maar in te loggen om onbeperkt toegang te krijgen tot Mijn BSL.

Top
Gepubliceerd in:

01-11-2007 | Original Article

Detection of motion onset and offset: reaction time and visual evoked potential analysis

Auteurs: Kairi Kreegipuu, Jüri Allik

Gepubliceerd in: Psychological Research | Uitgave 6/2007

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Manual reaction time (RT) and visual evoked potentials (VEP) were measured in motion onset and offset detection tasks. A considerable homology was observed between the temporal structure of RTs and VEP intervals, provided that the change in motion was detected as soon as the VEP signal has reached critical threshold amplitude. Both manual reactions and VEP rise in latency as the velocity of the onset or offset motion decreases and were well approximated by the same negative power function with the exponent close to −2/3. This indicates that motion processing is normalised by subtracting the initial motion vector from ongoing motion. A comparison of the motion onset VEP signals in two different conditions, in one of which the observer was instructed to abstain from the reaction and in the other to indicate as fast as possible the beginning of the motion, contained accurate information about the manual response.
Literatuur
go back to reference Allik, J., & Dzhafarov, E. N. (1984). Reaction time to motion onset: local dispersion model analysis. Vision Research, 24, 99–101.PubMedCrossRef Allik, J., & Dzhafarov, E. N. (1984). Reaction time to motion onset: local dispersion model analysis. Vision Research, 24, 99–101.PubMedCrossRef
go back to reference Amano, K., Nishida, S., & Takeda, T. (2006). MEG responses correlated with the visual perception of velocity change. Vision Research, 46, 336–345.PubMedCrossRef Amano, K., Nishida, S., & Takeda, T. (2006). MEG responses correlated with the visual perception of velocity change. Vision Research, 46, 336–345.PubMedCrossRef
go back to reference Bachmann, T. (2000). Microgenetic approach to the conscious mind. Amsterdam: John Benjamins Publishing Company. Bachmann, T. (2000). Microgenetic approach to the conscious mind. Amsterdam: John Benjamins Publishing Company.
go back to reference Bair, W., Cavanaugh, J. R., Smith, M. A, & Movshon, J. A. (2002). The timing of response onset and offset in macaque visual neurons. Journal of Neuroscience, 22, 3189–3205.PubMed Bair, W., Cavanaugh, J. R., Smith, M. A, & Movshon, J. A. (2002). The timing of response onset and offset in macaque visual neurons. Journal of Neuroscience, 22, 3189–3205.PubMed
go back to reference Bakardjian, H., Uchida, A., Endo, H., & Takeda, T. (2002). Magnetoencephalographic study of speed-dependent responses in apparent movement. Clinical Neurophysiology, 113, 1586–1597.PubMedCrossRef Bakardjian, H., Uchida, A., Endo, H., & Takeda, T. (2002). Magnetoencephalographic study of speed-dependent responses in apparent movement. Clinical Neurophysiology, 113, 1586–1597.PubMedCrossRef
go back to reference Ball, K., & Sekuler, R. (1980). Models of stimulus uncertainty in motion perception. Psychological Review, 87, 435–469.PubMedCrossRef Ball, K., & Sekuler, R. (1980). Models of stimulus uncertainty in motion perception. Psychological Review, 87, 435–469.PubMedCrossRef
go back to reference Beauchamp, M. S., Cox, R. W., & DeYoe, E. A. (1997) Graded effects of spatial and featural attention on human area MT and associated motion processing areas. Journal of Neurophysiology, 78, 516–520.PubMed Beauchamp, M. S., Cox, R. W., & DeYoe, E. A. (1997) Graded effects of spatial and featural attention on human area MT and associated motion processing areas. Journal of Neurophysiology, 78, 516–520.PubMed
go back to reference Collewijn, H. (1972). Latency and gain of the rabbit’s optokinetic reactions to small movements. Brain Research, 36, 59–70.PubMedCrossRef Collewijn, H. (1972). Latency and gain of the rabbit’s optokinetic reactions to small movements. Brain Research, 36, 59–70.PubMedCrossRef
go back to reference Conover, W. J. (1980). Practical nonparametric statistics. NY: Wiley. Conover, W. J. (1980). Practical nonparametric statistics. NY: Wiley.
go back to reference Culham, J., He, S., Dukelow, S., & Verstraten, F. A. (2001). Visual motion and the human brain: what has neuroimaging told us? Acta Psychologica, 101, 69–94.CrossRef Culham, J., He, S., Dukelow, S., & Verstraten, F. A. (2001). Visual motion and the human brain: what has neuroimaging told us? Acta Psychologica, 101, 69–94.CrossRef
go back to reference Dzhafarov, E. N., & Allik, J. (1984). A general theory of motion detection. In M. Rauk (Ed.), Computational models of hearing and vision (pp. 77–84). Tallinn: Estonian Academy of Sciences. Dzhafarov, E. N., & Allik, J. (1984). A general theory of motion detection. In M. Rauk (Ed.), Computational models of hearing and vision (pp. 77–84). Tallinn: Estonian Academy of Sciences.
go back to reference Dzhafarov, E. N., Sekuler, R., & Allik, J. (1993). Detection of changes in speed and direction of motion: reaction time analysis. Perception and Psychophysics, 54, 733–750.PubMed Dzhafarov, E. N., Sekuler, R., & Allik, J. (1993). Detection of changes in speed and direction of motion: reaction time analysis. Perception and Psychophysics, 54, 733–750.PubMed
go back to reference Gratton, G., & Coles, M. G. H. (1989). Generalization and evaluation of eye-movement correction procedures. Journal of Psychophysiology, 3, 14–16. Gratton, G., & Coles, M. G. H. (1989). Generalization and evaluation of eye-movement correction procedures. Journal of Psychophysiology, 3, 14–16.
go back to reference Gratton, G., Coles, M. G. H., & Donchin, E. (1983). A new method for off-line removal of ocular artifact. Electroencephalography and Clinical Neurophysiology, 55, 468–484.PubMedCrossRef Gratton, G., Coles, M. G. H., & Donchin, E. (1983). A new method for off-line removal of ocular artifact. Electroencephalography and Clinical Neurophysiology, 55, 468–484.PubMedCrossRef
go back to reference Hohnsbein, J., & Mateeff, S. (1992). The relation between the velocity of visual motion and the reaction time to motion onset and offset. Vision Research, 32, 1789–1791.PubMedCrossRef Hohnsbein, J., & Mateeff, S. (1992). The relation between the velocity of visual motion and the reaction time to motion onset and offset. Vision Research, 32, 1789–1791.PubMedCrossRef
go back to reference Hohnsbein, J., & Mateeff, S. (1998). The time it takes to detect changes in speed and direction of visual motion. Vision Research, 38, 2569–2573.PubMedCrossRef Hohnsbein, J., & Mateeff, S. (1998). The time it takes to detect changes in speed and direction of visual motion. Vision Research, 38, 2569–2573.PubMedCrossRef
go back to reference Kaneoke, Y., Bundou, M., & Kakigi, R. (1998). Timing of motion representation in the human visual system. Brain Research, 790, 195–201.PubMedCrossRef Kaneoke, Y., Bundou, M., & Kakigi, R. (1998). Timing of motion representation in the human visual system. Brain Research, 790, 195–201.PubMedCrossRef
go back to reference Kawakami, O., Kaneoke, Y., Maruyama, K., Kakigi, R., Okada, T., Sadato, N., & Yonekura, Y. (2002). Visual detection of motion speed in humans: spatiotemporal analysis by fMRI and MEG. Human Brain Mapping, 16, 104–118.PubMedCrossRef Kawakami, O., Kaneoke, Y., Maruyama, K., Kakigi, R., Okada, T., Sadato, N., & Yonekura, Y. (2002). Visual detection of motion speed in humans: spatiotemporal analysis by fMRI and MEG. Human Brain Mapping, 16, 104–118.PubMedCrossRef
go back to reference Kuba, M., & Kubová, Z. (1992). Visual evoked potentials specific for motion onset. Documenta Ophthalmologica, 80, 83–89.PubMedCrossRef Kuba, M., & Kubová, Z. (1992). Visual evoked potentials specific for motion onset. Documenta Ophthalmologica, 80, 83–89.PubMedCrossRef
go back to reference Kuba, M., Kremláček, J., & Kubová, Z. (1998). Cognitive evoked potentials related to visual perception of motion in human subjects. Physiological Research, 47, 265–270.PubMed Kuba, M., Kremláček, J., & Kubová, Z. (1998). Cognitive evoked potentials related to visual perception of motion in human subjects. Physiological Research, 47, 265–270.PubMed
go back to reference Kubová, Z., Kremláček, J., Szanyi, J., Chlubnová, J., & Kuba, M. (2002). Visual event-related potentials to moving stimuli: normative data. Physiological Research, 51, 199–204.PubMed Kubová, Z., Kremláček, J., Szanyi, J., Chlubnová, J., & Kuba, M. (2002). Visual event-related potentials to moving stimuli: normative data. Physiological Research, 51, 199–204.PubMed
go back to reference Markwardt, F., Göpfert, E., & Müller, R. (1988). Influence of velocity, temporal frequency and initial phase position of grating patterns on motion VEP. Biomedica Biochimica Acta, 47, 753–760.PubMed Markwardt, F., Göpfert, E., & Müller, R. (1988). Influence of velocity, temporal frequency and initial phase position of grating patterns on motion VEP. Biomedica Biochimica Acta, 47, 753–760.PubMed
go back to reference Maruyama, K., Kaneoke, Y., Watanabe, K., & Kakigi, R. (2002). Human cortical responses to coherent and incoherent motion as measured by magnetoencephalography. Neuroscience Research, 44, 195–205.PubMedCrossRef Maruyama, K., Kaneoke, Y., Watanabe, K., & Kakigi, R. (2002). Human cortical responses to coherent and incoherent motion as measured by magnetoencephalography. Neuroscience Research, 44, 195–205.PubMedCrossRef
go back to reference Mashhour, M. (1964). Psychophysical relations in the perception of velocity. Stockholm: Almquist & Wiksell. Mashhour, M. (1964). Psychophysical relations in the perception of velocity. Stockholm: Almquist & Wiksell.
go back to reference Mateeff, S., Genova, B., & Hohnsbein, J. (1999). The simple reaction time to changes in direction of visual motion. Experimental Brain Research, 124, 391–394.CrossRef Mateeff, S., Genova, B., & Hohnsbein, J. (1999). The simple reaction time to changes in direction of visual motion. Experimental Brain Research, 124, 391–394.CrossRef
go back to reference Mateeff, S., Dimitrov, G., Genova, B., Likova, L., Stefanova, M., & Hohnsbein, J. (2000). The discrimination of abrupt changes in speed and direction of visual motion. Vision Research, 40, 409–415.PubMedCrossRef Mateeff, S., Dimitrov, G., Genova, B., Likova, L., Stefanova, M., & Hohnsbein, J. (2000). The discrimination of abrupt changes in speed and direction of visual motion. Vision Research, 40, 409–415.PubMedCrossRef
go back to reference Müller, R., Göpfert, E., Breuer, D., & Greenlee, M. W. (1999). Motion VEPs with simultaneous measurement of perceived velocity. Documenta Ophthalmologica, 97, 121–134.CrossRef Müller, R., Göpfert, E., Breuer, D., & Greenlee, M. W. (1999). Motion VEPs with simultaneous measurement of perceived velocity. Documenta Ophthalmologica, 97, 121–134.CrossRef
go back to reference Niedeggen, M., Sahraie, A., Hesselmann, G., Milders, M., & Blakemore, C. (2002). Is experimental motion blindness due to sensory suppression? An ERP approach. Cognitive Brain Research, 13, 241–247.PubMedCrossRef Niedeggen, M., Sahraie, A., Hesselmann, G., Milders, M., & Blakemore, C. (2002). Is experimental motion blindness due to sensory suppression? An ERP approach. Cognitive Brain Research, 13, 241–247.PubMedCrossRef
go back to reference Patzwahl, D. R., & Zanker, J. M. (2000). Mechanisms of human motion perception: combining evidence from evoked potentials, behavioural performance and computational modeling. European Journal of Neuroscience, 12, 273–282.PubMedCrossRef Patzwahl, D. R., & Zanker, J. M. (2000). Mechanisms of human motion perception: combining evidence from evoked potentials, behavioural performance and computational modeling. European Journal of Neuroscience, 12, 273–282.PubMedCrossRef
go back to reference Piéron, H. (1920). Nouvelles recherches su l’analyse du temps de latence sensorielle en fonction des intensités exitatrice. L’Année Psychologique, 22, 58–142. Piéron, H. (1920). Nouvelles recherches su l’analyse du temps de latence sensorielle en fonction des intensités exitatrice. L’Année Psychologique, 22, 58–142.
go back to reference Raymond, J. E. (2000). Attentional modulation of visual motion perception. Trends in Cognitive Sciences, 4, 42–50.PubMedCrossRef Raymond, J. E. (2000). Attentional modulation of visual motion perception. Trends in Cognitive Sciences, 4, 42–50.PubMedCrossRef
go back to reference Schellart, N. A. M., Trindade, M. J. G., Reits, D., Verbunt, J. P. A., & Spekreijse, H. (2004). Temporal and spatial congruence of components of motion-onset evoked responses investigated by whole-head magno-electroencephalography. Vision Research, 44, 119–134.PubMedCrossRef Schellart, N. A. M., Trindade, M. J. G., Reits, D., Verbunt, J. P. A., & Spekreijse, H. (2004). Temporal and spatial congruence of components of motion-onset evoked responses investigated by whole-head magno-electroencephalography. Vision Research, 44, 119–134.PubMedCrossRef
go back to reference Spekreijse, H., Dagnelie, G., Maier, J., & Regan, D. (1985). Flicker and movement constituents of the pattern reversal response. Vision Research, 25, 1297–1304.PubMedCrossRef Spekreijse, H., Dagnelie, G., Maier, J., & Regan, D. (1985). Flicker and movement constituents of the pattern reversal response. Vision Research, 25, 1297–1304.PubMedCrossRef
go back to reference Tynan, P. D., & Sekuler, R. (1982). Motion processing in peripheral vision: reaction time and perceived velocity. Vision Research, 22, 61–68.PubMedCrossRef Tynan, P. D., & Sekuler, R. (1982). Motion processing in peripheral vision: reaction time and perceived velocity. Vision Research, 22, 61–68.PubMedCrossRef
go back to reference Wang, L., Kaneoke, Y., & Kakigi, R. (2003). Spatiotemporal separability in the human cortical response to visual motion speed: a magnetoencephalography study. Neuroscience Research, 47, 109–116.PubMedCrossRef Wang, L., Kaneoke, Y., & Kakigi, R. (2003). Spatiotemporal separability in the human cortical response to visual motion speed: a magnetoencephalography study. Neuroscience Research, 47, 109–116.PubMedCrossRef
go back to reference Whitney, D., Goltz, H. C., Thomas, C. G., Gati, J. S., Menon, R. S., & Goodale, M. A. (2003). Flexible retinotopy: motion-dependent position coding in the visual cortex. Science, 302, 878–881.PubMedCrossRef Whitney, D., Goltz, H. C., Thomas, C. G., Gati, J. S., Menon, R. S., & Goodale, M. A. (2003). Flexible retinotopy: motion-dependent position coding in the visual cortex. Science, 302, 878–881.PubMedCrossRef
Metagegevens
Titel
Detection of motion onset and offset: reaction time and visual evoked potential analysis
Auteurs
Kairi Kreegipuu
Jüri Allik
Publicatiedatum
01-11-2007
Uitgeverij
Springer-Verlag
Gepubliceerd in
Psychological Research / Uitgave 6/2007
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-006-0059-1