Skip to main content

Welkom bij Scalda & Bohn Stafleu van Loghum

Scalda heeft ervoor gezorgd dat je Mijn BSL eenvoudig en snel kunt raadplegen.Je kunt de producten hieronder links aanschaffen en rechts inloggen.

Registreer

Schaf de BSL Academy aan: 

BSL Academy mbo AG

Eenmaal aangeschaft kun je thuis, of waar ook ter wereld toegang krijgen tot Mijn BSL.

Heb je een vraag, neem dan contact op met Jan van der Velden.

Login

Als u al geregistreerd bent, hoeft u alleen maar in te loggen om onbeperkt toegang te krijgen tot Mijn BSL.

Top
Gepubliceerd in:

10-12-2024 | Empirical Research

Exploring Shared and Unique Predictors of Positive and Negative Risk-Taking Behaviors Among Chinese Adolescents Through Machine-Learning Approaches: Discovering Gender and Age Variations

Auteurs: Ying Liu, Qifan Zou, Ying Xie, Kai Dou

Gepubliceerd in: Journal of Youth and Adolescence | Uitgave 5/2025

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Despite extensive research on the impact of individual and environmental factors on negative risk-taking behaviors, the understanding of these factors’ influence on positive risk-taking, and how it compares to negative risk taking, remains limited. This research employed machine-learning techniques to identify shared and unique predictors across individual, family, and peer domains. Participants (N = 1012; 44% girls; Mage = 14.60 years, SD = 1.16 years) were drawn from three public middle schools in a large city in southern China (with 49.2% in grade 7 and 50.8% in grade 11). The findings indicate that positive risk-taking is significantly associated with general risk propensity, self-control, and negative parenting by father, while negative risk-taking is correlated with self-control, deviant peer affiliations, and peer victimization. Paternal negative parenting triggered positive risk-taking in boys, whereas self-control had a greater impact on girls. For negative risk-taking, boys were more affected by peer victimization, while girls were more influenced by deviant peer affiliations. This study further demonstrates that as progress from junior to senior high school, peer influence grows more significant in predicting positive risk taking; deviant peer affiliations exert a persistent pivotal influence, future positive time perspective replaces life satisfaction, and paternal negative parenting becomes increasingly impactful in predicting negative risk taking.
Bijlagen
Alleen toegankelijk voor geautoriseerde gebruikers
Literatuur
go back to reference Ahmadi, K., Khodadadi Sangdeh, J., Aminimanesh, S., Mollazamani, A., & Khanzade, M. (2013). The role of parental monitoring and affiliation with deviant peers in adolescents’ sexual risk taking: Toward an interactional model. International Journal of High Risk Behaviors & Addiction, 2(1), 22–27. https://doi.org/10.5812/ijhrba.8554.CrossRef Ahmadi, K., Khodadadi Sangdeh, J., Aminimanesh, S., Mollazamani, A., & Khanzade, M. (2013). The role of parental monitoring and affiliation with deviant peers in adolescents’ sexual risk taking: Toward an interactional model. International Journal of High Risk Behaviors & Addiction, 2(1), 22–27. https://​doi.​org/​10.​5812/​ijhrba.​8554.CrossRef
go back to reference Bandura, A. (1977). Social learning theory. Prentice-Hall Bandura, A. (1977). Social learning theory. Prentice-Hall
go back to reference Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In B. Krishnapuram, M. Shah, A. Smola, C. Aggarwal, D. Shen, & R. Rastogi (Eds.), KDD ‘16: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 785–794). Association for Computing Machinery. https://doi.org/10.1145/2939672.2939785 Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In B. Krishnapuram, M. Shah, A. Smola, C. Aggarwal, D. Shen, & R. Rastogi (Eds.), KDD ‘16: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 785–794). Association for Computing Machinery. https://​doi.​org/​10.​1145/​2939672.​2939785
go back to reference Crone, E. A., van Duijvenvoorde, A. C. K., & Peper, J. S. (2016). Annual research review: Neural contributions to risk-taking in adolescence: Developmental changes and individual differences. Journal of Child Psychology and Psychiatry and Allied Disciplines, 57(3), 353–368. https://doi.org/10.1111/jcpp.12502.CrossRefPubMed Crone, E. A., van Duijvenvoorde, A. C. K., & Peper, J. S. (2016). Annual research review: Neural contributions to risk-taking in adolescence: Developmental changes and individual differences. Journal of Child Psychology and Psychiatry and Allied Disciplines, 57(3), 353–368. https://​doi.​org/​10.​1111/​jcpp.​12502.CrossRefPubMed
go back to reference Ellis, B. J., Del Giudice, M., Dishion, T. J., Figueredo, A. J., Gray, P., Griskevicius, V., Hawley, P. H., Jacobs, W. J., James, J., Volk, A. A., & Wilson, D. S. (2012). The evolutionary basis of risky adolescent behavior: Implications for science, policy, and practice. Developmental Psychology, 48(3), 598–623. https://doi.org/10.1037/a0026220.CrossRefPubMed Ellis, B. J., Del Giudice, M., Dishion, T. J., Figueredo, A. J., Gray, P., Griskevicius, V., Hawley, P. H., Jacobs, W. J., James, J., Volk, A. A., & Wilson, D. S. (2012). The evolutionary basis of risky adolescent behavior: Implications for science, policy, and practice. Developmental Psychology, 48(3), 598–623. https://​doi.​org/​10.​1037/​a0026220.CrossRefPubMed
go back to reference Gutierrez, P., & Gérardy, J. (2017). Causal inference and uplift modelling: A review of the literature. In C. Hardgrove, L. Dorard, K. Thompson, & F. Douetteau (Eds.), Proceedings of the 3rd international conference on predictive applications and APIs (pp. 1-13). Proceedings of Machine Learning Research. https://proceedings.mlr.press/v67/gutierrez17a.html Gutierrez, P., & Gérardy, J. (2017). Causal inference and uplift modelling: A review of the literature. In C. Hardgrove, L. Dorard, K. Thompson, & F. Douetteau (Eds.), Proceedings of the 3rd international conference on predictive applications and APIs (pp. 1-13). Proceedings of Machine Learning Research. https://​proceedings.​mlr.​press/​v67/​gutierrez17a.​html
go back to reference Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., & Liu, T. Y. (2017). LightGBM: A highly efficient gradient boosting decision tree. In U. Von Luxburg, I. Guyon, S. Bengio, H. Wallach, & R. Fergus (Eds.), NIPS'17: Proceedings of the 31st international conference on neural information processing systems (pp. 3149–3157). Curran Associates Inc. https://doi.org/10.5555/3294996.3295074 Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., & Liu, T. Y. (2017). LightGBM: A highly efficient gradient boosting decision tree. In U. Von Luxburg, I. Guyon, S. Bengio, H. Wallach, & R. Fergus (Eds.), NIPS'17: Proceedings of the 31st international conference on neural information processing systems (pp. 3149–3157). Curran Associates Inc. https://​doi.​org/​10.​5555/​3294996.​3295074
go back to reference Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions. In U. Von Luxburg, I. Guyon, S. Bengio, H. Wallach, & R. Fergus (Eds.), NIPS'17: Proceedings of the 31st international conference on neural information processing systems (pp. 4768–4777). Curran Associates Inc. https://doi.org/10.5555/3295222.3295230 Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions. In U. Von Luxburg, I. Guyon, S. Bengio, H. Wallach, & R. Fergus (Eds.), NIPS'17: Proceedings of the 31st international conference on neural information processing systems (pp. 4768–4777). Curran Associates Inc. https://​doi.​org/​10.​5555/​3295222.​3295230
go back to reference Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. The Journal of Machine Learning Research, 12, 2825–2830. https://doi.org/10.5555/1953048.2078195.CrossRef Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. The Journal of Machine Learning Research, 12, 2825–2830. https://​doi.​org/​10.​5555/​1953048.​2078195.CrossRef
Metagegevens
Titel
Exploring Shared and Unique Predictors of Positive and Negative Risk-Taking Behaviors Among Chinese Adolescents Through Machine-Learning Approaches: Discovering Gender and Age Variations
Auteurs
Ying Liu
Qifan Zou
Ying Xie
Kai Dou
Publicatiedatum
10-12-2024
Uitgeverij
Springer US
Gepubliceerd in
Journal of Youth and Adolescence / Uitgave 5/2025
Print ISSN: 0047-2891
Elektronisch ISSN: 1573-6601
DOI
https://doi.org/10.1007/s10964-024-02120-5