A seminal paper by George S. Klein in 1964 (Klein,
1964) represents a critical impetus for understanding different types of informational conflict. Indeed, up until Klein, all studies had utilized incongruent color-word stimuli as the irrelevant dimension. Klein was the first to manipulate the relatedness of the irrelevant word to the relevant color responses to determine the “evocative strength of the printed word” (
1964, p. 577). To this end, he compared color-naming times of lists of nonsense syllables, low-frequency non-color-related words, high-frequency non-color words, words with color-related meanings (semantic associates: e.g., lemon, frog, sky), color words that were not in the set of possible response colors (non-response set stimuli), and color words that were in the set of possible response colors (response set stimuli). The response times increased linearly in the order they are presented above. Whilst lists of nonsense syllables vs. low-frequency words, high-frequency words vs. semantic-associative stimuli, and semantic-associative stimuli vs. non-response set stimuli did not differ, all other comparisons were significant.
It is important to underscore that for Klein himself, there was no competition between semantic nodes or at any stage of processing, and, thus, no need for attentional selection other than at the response stage. Only when both irrelevant word and relevant color are processed to the point of providing evidence towards different motor responses, do the two sources of information compete. Said differently, whilst he questioned the effect of semantic relatedness, Klein assumed that semantic relatedness would only affect the strength of activation of alternative motor responses. Highlighting his favoring of a single late locus for attentional selection, Klein noted that words that are semantically distant from the color name would be less likely to “arouse the associated motor-response in competitive intensity” (p. 577). Although others (e.g., early selection accounts mentioned above) have argued for competition and selection occurring earlier than response output, a historically favored view of the Stroop interference effect as resulting solely from response conflict has prevailed (MacLeod,
1991) such that so-called informational conflict (MacLeod & MacDonald,
2000) is viewed as being essentially solely response conflict. That is, the color and word dimensions are processed sufficiently to produce evidence towards different responses and before the word dimension is incorrectly selected, mechanisms of selective attention at response output have to either inhibit the incorrect response or bias the correct response.
Same-response trials
Same-response trials utilize a two-to-one color-response mapping and have become the most popular way of distinguishing semantic and response conflict in recent studies (e.g., Chen et al.,
2011; Chen, Lei, Ding, Li, & Chen,
2013a; Chen, Tang & Chen,
2013b; Jiang et al.,
2015; van Veen & Carter,
2005). First introduced by De Houwer (
2003), this method maps two color responses to the same response button (see Fig.
1), which allows for a distinction between stimulus–stimulus (lexico-semantic) and stimulus–response (response) conflict.
By mapping two response options onto the same response key (e.g., both ‘blue’ and ‘yellow’ are assigned to the ‘z’ key), certain stimuli combinations (e.g., when
blue is printed in yellow) are purported to not involve competition at the level of response selection; thus, any interference during same-response trials is thought to involve only semantic conflict. Any additional interference on different-response incongruent trials (e.g., when
red is printed in yellow and where both ‘red’ and ‘yellow’ are assigned to different response keys) is taken as an index of response conflict. Performance on congruent trials (sometimes referred to as identity trials when used in the context of the two-to-one color-response mapping paradigm, here after 2:1 paradigm) is compared to performance on same-response incongruent trials to reveal interference that can be attributed to only semantic conflict, whereas a different-response incongruent vs same-response incongruent trial comparison is taken as an index of response conflict. Thus, the main advantage of using same-response incongruent trials as an index of semantic conflict is that this approach claims to be able to remove all of the influence of response competition (De Houwer,
2003). Notably, according to some models of Stroop task performance same-response incongruent trials should not produce interference because they do not involve response conflict (Cohen, Dunbar & McCelland,
1990; Roelofs,
2003).
Despite providing a seemingly convenient measure of semantic and response conflict, the studies that have employed the 2:1 paradigm share one major issue—that of an inappropriate baseline (see MacLeod,
1992). Same-response incongruent trials have consistently been compared to congruent trials to index semantic conflict. However, congruent trials also involve facilitation (both response and semantic facilitation—see below for more discussion of this) and thus, the difference between these two trial types could simply be facilitation and not semantic interference, a possibility De Houwer (
2003) alluded to in his original paper (see also Schmidt et al.,
2018). And whilst same-response trials plausibly involve semantic conflict, they are also likely to involve response facilitation because despite being semantically incongruent, the two dimensions of
this type of Stroop stimulus provide evidence towards the same response. This means that both same-response and congruent trials involve response facilitation. Therefore the difference between same-response and congruent trials would actually be semantic conflict (experienced on same-response trials) + semantic facilitation (experienced on congruent trials), not just semantic conflict. This also has ramifications for the difference between different-response and same-response trials since the involvement of response facilitation on same-response trials means that the comparison of these two trials types would actually be response conflict plus response facilitation, not just response conflict.
Hasshim and Parris (
2014) explored this possibility by comparing same-response incongruent trials to non-color-word neutral trials. They reasoned that this comparison could reveal faster RTs to same-response incongruent trials thereby providing evidence for response facilitation on same-response trials. In contrast, it could also reveal faster RTs to non-color-word neutral trials, thus, would have provided evidence for semantic interference (and would indicate that whatever response facilitation is present is hidden by an opposing and greater amount of semantic conflict). Hasshim and Parris reported no statistical difference between the RTs of the two trial types and reported Bayes Factors indicating evidence in favor of the null hypothesis of no difference. This would suggest that, when using reaction time as the index of performance, same-response incongruent trials cannot be employed as a measure of semantic conflict since they are not different from non-color-word neutral trials. In a later study, the same researchers investigated whether the two-to-one color-response mapping paradigm could still be used to reveal semantic conflict when using a more sensitive measure of performance than RT (Hasshim & Parris,
2015). They attempted to provide evidence for semantic conflict using an oculomotor Stroop task and an early, pre-response pupillometric measure of effort, which had previously been shown to provide a reliable alternative measure of the potential differences between conditions (Hodgson et al.,
2009). However, in line with their previous findings, they reported Bayes Factors indicating evidence for no statistical difference between the same-response incongruent trials and non-color-word neutral trials. These findings, therefore, suggest that the difference between same-response incongruent trials and congruent trials indexes facilitation on congruent trials, and that the former trials are not therefore a reliable measure of semantic conflict when reaction times or pupillometry are used as the dependent variable. Notably, Hershman and Henik (
2020) included neutral trials in their study of the 2:1 paradigm, but did not report statistics comparing same-response and neutral trials (although they did report differences between same-response and congruent trials where the latter had similar RTs to their neutral trials) It is clear from their Fig. 1, however, that pupil sizes for neutral and same-response trials do begin to diverge at around the time the button press response was made. This divergence gets much larger ~ 500 ms post-response indicating that a difference between the two trial types is detectable using pupillometry. Importantly, however, Hershman and Henik employed repeated letter string as their neutral condition, which does not involve task conflict (see the section on task conflict below for more details). This means that any differences between their neutral trial and the same-response trial could be entirely due to task and not semantic conflict.
However, despite Hasshim and Parris consistently reporting no difference between same-response and non-color-word neutral trials, in an unpublished study, Lakhzoum (
2017) has reported a significant difference between non-color-word neutral trials and same-response trials. Lakhzoum’s study contained no special modifications to induce a difference between these two trial types, and had roughly similar trial and participant numbers and a similar experimental set-up to Hasshim and Parris. Yet Lakhzoum observed the effect that Hasshim and Parris have consistently failed to observe. The one clear difference between Lakhzoum (
2017), Hasshim and Parris (
2014,
2015), however, was that Lakhzoum used French participants and presented the stimuli in French where Hasshim and Parris conducted their studies in English. A question for further research then is whether and to what extent language, including issues such as orthographic depth of the written script of that language, might modify the utility of same-response trials as an index of semantic conflict.
Indeed, even though the 2:1 paradigm is prone to limitations, more research is needed to assess its utility for distinguishing response and semantic conflict. Notably, in both their studies Hasshim and Parris used colored patches as the response targets (at least initially, Hasshim & Parris,
2015, replaced the colored patches with white patches after practice trials) which could have reduced the magnitude of the Stroop effect (Sugg & McDonald,
1994). Same-response trials cannot, for obvious reasons, be used with the commonly used vocal response as a means to increase Stroop effects (see Response Modes and varieties of conflict section below), but future studies could use written word labels, a manipulation that has also been shown to increase Stroop effects (Sugg & McDonald,
1994), and thus might reveal a difference between same-response incongruent and non-color-word neutral conditions. At the very least future studies employing same-response incongruent trials should also employ a neutral non-color-word baseline (as opposed to color patches used by Shichel & Tzelgov,
2018) to properly index semantic conflict and should avoid the confounding issues associated with congruent trials (see also the section on Informational Facilitation below).
As noted above, same-response incongruent trials are also likely to involve response facilitation since both dimensions (word and color) provide evidence toward the same response. Since congruent trials and same-response incongruent trials both involve response facilitation, the difference between the two conditions likely represents semantic facilitation, not semantic conflict. As a consequence, indexing response conflict via the difference between different-response and same-response trials is also problematic. Until further work is done to clarify these issues, work applying the 2:1 color-response paradigm to understand the neural substrates of semantic and response conflicts (e.g., Van Veen & Carter,
2005) or wider issues such as anxiety (Berggren & Derakshan,
2014) remain difficult to interpret.
Non-response set trials
Non-response set trials are trials on which the irrelevant color word used is not part of the response set (e.g., the word ‘orange’ in blue, where orange is not a possible response option and blue is; originally introduced by Klein,
1964). Since the non-response set color word will activate color-processing systems, interference on such trials has been interpreted as evidence for conflict occurring at the semantic level. These trials should in theory remove the influence of response conflict because the irrelevant color word is not a possible response option and thus, conflict at the response level is not present. The difference in performance between the non-response set trials and a non-color-word neutral baseline condition (e.g., the word ‘table’ in red) is taken as evidence of interference caused by the semantic processing of the irrelevant color word (i.e., semantic conflict). In contrast, response conflict can be isolated by comparing the difference between the performance on incongruent trials and the non-response set trials. This index of response conflict has been referred to as the response set effect (Hasshim & Parris,
2018; Lamers et al.,
2010) or the response set membership effect (Sharma & McKenna,
1998) and describes the interference that is a result of the irrelevant word denoting a color that is also a possible response option. The aim of non-response set trials is to provide a condition where the irrelevant word is semantically incongruent with the relevant color such that the resultant semantic conflict is the only form of conflict present.
It has been argued that the interference measured using non-response set trials, the non-response set effect, is an indirect measure of response conflict (Cohen et al.,
1990; Roelofs,
2003) and is, thus, not a measure of semantic conflict. That is, the non-response set effect results from the semantic link between the non-response set words and the response set colors and indirect activation of the other response set colors leads to response competition with the target color. As far as we are aware there is no study that has provided or attempted to provide evidence that is inconsistent with this argument. Thus, for non-response set trials to have utility in distinguishing response and semantic conflict, future research will need to evidence the independence of these types of conflict in RTs and other dependent measures.
Semantic-associative trials
Another method that has been used to tease apart semantic and response conflict employs words that are semantically associated with colors (e.g., sky-blue, frog-green). In trials of this kind (e.g.,
sky printed in green), first introduced by Klein (
1964), the irrelevant words are semantically related to each of the response colors. Recall that for Klein this was a way of investigating different magnitudes of response conflict (the indirect response conflict interpretation). Indeed, the notion of comparing RTs on color-associated incongruent trials to those on color-neutral trials to specifically isolate semantic conflict (i.e., so-called “sky-put” design) was first suggested by Neely and Kahan (
2001). It was later actually empirically implemented by Manwell, Roberts and Besner (
2004) and used since in multiple studies investigating Stroop interference (e.g., Augustinova & Ferrand,
2014; Risko et al.,
2006; Sharma & McKenna,
1998; White et al.,
2016).
Interference observed when using semantic associates tends to be smaller than when using non-response set trials (Klein,
1964; Sharma & McKenna,
1998). This suggests that semantic associates may not capture semantic interference in its entirety (or alternatively that non-response set trials involve some response conflict). Sharma and McKenna (
1998) postulated that this is because non-response set trials involve an additional level of semantic processing which, following Neumann (
1980) and La Heij, Van der Heijdan, and Schreuder (
1985), they called semantic relevance (due to the fact that color words are also relevant in a task in which participants identify colors). It is, however, also the case that smaller interference observed with semantic associates compared to non-response set trials can be conceptualized simply as less semantic association with the response colors for non-color words (sky-blue) than for color words (red–blue).
As with non-response set trials, it is unclear whether semantic associates exclude the influence of response competition because they too can be modeled as indirect measures of response conflict (e.g., Roelofs,
2003). Since semantic-associative interference could be the result of the activation of the set of response colors to which they are associated (for instance when
sky in red activates competing response set option blue), it does not allow for a clear distinction between semantic and response processes. In support of this possibility, Risko et al. (
2006) reported that approximately half of the semantic-associative Stroop effect is due to response set membership and therefore response level conflict. The raw effect size of pure semantic-associative interference (after interference due to response set membership was removed) in their study was only between 6 ms (manual response, 112 participants) and 10 ms (vocal response, 30 participants).
When the same group investigated this issue with a different approach (i.e., ex-Gaussian analysis), their conclusions were quite different. White and colleagues (
2016) found the semantic Stroop interference effect (difference between semantic-associative and color-neutral trials) in the mean of the normal distribution (mu) and in the standard deviation of the normal distribution (sigma), but not the tail of the RT distribution (tau). This finding was different from past studies that found standard Stroop interference in all three parameters (see, e.g., Heathcote et al.,
1991). Therefore, White and colleagues reasoned that the source of the semantic (as opposed standard) Stroop effect is different such that the interference associated with response competition on standard color-incongruent trials (that is to be seen in tau) is absent in incongruent semantic associates. However, White et al. only investigated semantic conflict. A more recent study that considered both response and semantic conflict in the same experiment found they influence similar portions of the RT distribution (Hasshim, Downes, Bate, & Parris,
2019), suggesting that ex-Gaussian analysis cannot be used to distinguish the two types of conflict.
Interestingly, Schmidt and Cheesman (
2005) explored whether semantic-associative trials involve response conflict by employing the 2:1 paradigm depicted above. With the standard Stroop stimuli, they reported the common differences between same- and different-response incongruent trials (that are thought to indicate response conflict) and between congruent and same-response incongruent (that are thought to indicate semantic conflict in the 2:1 paradigm). However, with semantic-associative stimuli they only observed an effect of semantic conflict a finding that differs from that of Risko et al. (
2006) whose results indicate an effect of response conflict with semantic-associative stimuli. But, as already noted, the issues associated with employing just congruent trials as a baseline in the 2:1 paradigm and the potential response facilitation on same-response trials lessens the interpretability of this result.
Complicating matters further still, Lorentz et al. (
2016) showed that the semantic-associative Stroop effect is not present in reaction time data when response contingency (a measure of how often an irrelevant word is paired with any particular color) is controlled by employing two separate contingency-matched non-color-word neutral conditions (but see Selimbegovic, Juneau, Ferrand, Spatola & Augustinova,
2019). There was, however, evidence for Stroop facilitation with these stimuli and for interference effects in the error data. Nevertheless, studies utilizing semantic-associative stimuli that have not controlled for response contingency might not have accurately indexed semantic-associative interference. Future research should focus on assessing the magnitude of the semantic-associative Stroop interference effect after the influences of response set membership and response contingency have been controlled.
Levin and Tzelgov (
2016) also reported that they failed to observe the semantic-associative Stroop effect across multiple experiments using a vocal response (in both Hebrew and Russian). Only when the semantic associations were primed via a training protocol were semantic-associative Stroop effects observed, although they were not able to consistently report evidence for the null hypothesis of no difference. They subsequently argued that the semantic-associative Stroop effect is probably present but is a small and “unstable” contributor to Stroop interference. This is a somewhat surprising conclusion given the small but consistent effects reported by others with a vocal response (Klein,
1964; Risko et al.,
2006; Scheibe et al.,
1967; White et al.,
2016; see Augustinova & Ferrand,
2014, for a review). However, it seems reasonable to conclude that the semantic-associative Stroop effect is not easily observed, especially with a manual response (e.g., Sharma & McKenna,
1998).
Finally, any observed semantic-associative interference could be interpreted as being an indirect measure of response competition (even after factors such as response set membership and response contingency are controlled). Indeed, the colors associated with the semantic-associative stimuli are also linked to the response set colors (Cohen et al.,
1990; Roelofs,
2003) and thus, semantic associates do not generate an unambiguous measure of semantic conflict, at least when only RTs are used. Thus, it seems essential for future research to investigate this issue with additional, and perhaps more refined indicators of response processing such as EMGs.
Semantics as distance on the electromagnetic spectrum
Klopfer (
1996) demonstrated that RTs were slower when both dimensions of the Stroop stimulus were closely related on the electromagnetic spectrum. The electromagnetic spectrum is the range of frequencies of electromagnetic radiation and their wavelengths including those for visible light. The visible light portion of the spectrum goes from red with the shortest and violet with the longest wavelengths with Orange, Yellow, Green and Blue (amongst others) in between. The Stroop effect has been reported to be larger when the color and word dimensions of the Stroop stimulus are close on the spectrum (e.g.,
blue in green) compared to when the colors were distantly related (e.g.,
blue in red; see also Laeng et al.,
2005, for an effect of color opponency on Stroop interference). In other words, Stroop interference is greater when the semantic distance between the color denoted by the word and the target color in “color space” is smaller, making it seemingly difficult to argue that semantic conflict does not contribute to Stroop interference. However, Kinoshita, Mills, and Norris (
2018) recently failed to replicate this electromagnetic spectrum effect indicating that more research is needed to assess whether this is a robust effect. Even if replicated, however, this manipulation cannot escape the interpretation of semantic conflict as being the indirect indexing of response conflict. Therefore, these replications also call for additional indicators of response processing or the lack of thereof.
Can we distinguish the contribution of response and semantic processing?
Perhaps due to the past competition between early and late selection, single-stage accounts of Stroop interference (Logan & Zbrodoff,
1998; MacLeod,
1991) response and semantic conflict have historically been the most studied and, therefore, compared types of conflict. For instance, there is a multitude of studies indicating that semantic conflict is often preserved when response conflict is reduced by experimental manipulations including hypnosis-like suggestion (Augustinova & Ferrand,
2012), priming (Augustinova & Ferrand,
2014), Response–Stimulus Interval (Augustinova et al.,
2018a), viewing position (Ferrand & Augustinova,
2014a) and single letter coloring (Augustinova & Ferrand,
2007; Augustinova et al.,
2010,
2015,
2018a,
2018b). This dissociative pattern (i.e., significant semantic conflict while response conflict is reduced or even eliminated) is often viewed as indicating two qualitatively distinct types of conflict, suggesting that these manipulations result in response conflict being prevented. However, these studies have commonly employed semantic-associative conflict which could be indirectly measuring response conflict and it could, therefore, be argued that it is not the type of conflict but simply residual response conflict that remains (Cohen et al.,
1990; Roelofs,
2003). Therefore, it still remains plausible that the dissociative pattern simply indicates quantitative differences in response conflict.
As we have discussed in this section, interference generated by both non-response trials and trials that manipulation proximity on the electromagnetic spectrum are prone to the same limitations. The 2:1 paradigm is a paradigm that could in principle remove response conflict from the conflict equation, but the issues surrounding this manipulation need to be further researched before we can be confident of its utility. Therefore, at this point, it seems reasonable to conclude that published research conducted so far with additional color-incongruent trial types (same-response, non-response, or semantic-associative trials) does not permit the unambiguous conclusion that the informational conflict generated by standard color-incongruent trials (word ‘red’ presented in blue) can be decomposed into semantic and response conflicts. More than ever then, cumulative evidence from more time- and process-sensitive measures are required.