Abstract
We process information from the world through multiple senses, and the brain must decide what information belongs together and what information should be segregated. One challenge in studying such multisensory integration is how to quantify the multisensory interactions, a challenge that is amplified by the host of methods that are now used to measure neural, behavioral, and perceptual responses. Many of the measures that have been developed to quantify multisensory integration (and which have been derived from single unit analyses), have been applied to these different measures without much consideration for the nature of the process being studied. Here, we provide a review focused on the means with which experimenters quantify multisensory processes and integration across a range of commonly used experimental methodologies. We emphasize the most commonly employed measures, including single- and multiunit responses, local field potentials, functional magnetic resonance imaging, and electroencephalography, along with behavioral measures of detection, accuracy, and response times. In each section, we will discuss the different metrics commonly used to quantify multisensory interactions, including the rationale for their use, their advantages, and the drawbacks and caveats associated with them. Also discussed are possible alternatives to the most commonly used metrics.





Similar content being viewed by others
References
Ahissar M, Ahissar E, Bergman H, Vaadia E (1992) Encoding of sound-source location and movement: activity of single neurons and interactions between adjacent neurons in the monkey auditory cortex. J Neurophysiol 67(1):203–215
Allman BL, Meredith MA (2007) Multisensory processing in “unimodal” neurons: cross-modal subthreshold auditory effects in cat extrastriate visual cortex. J Neurophysiol 98(1):545–549
Allman BL, Keniston LP, Meredith MA (2008) Subthreshold auditory inputs to extrastriate visual neurons are responsive to parametric changes in stimulus quality: sensory-specific versus non-specific coding. Brain Res 1242:95–101. doi:10.1016/j.brainres.2008.03.086
Allman BL, Keniston LP, Meredith MA (2009) Not just for bimodal neurons anymore: the contribution of unimodal neurons to cortical multisensory processing. Brain Topogr 21(3–4):157–167. doi:10.1007/s10548-009-0088-3
Altieri N, Townsend JT (2011) An assessment of behavioral dynamic information processing measures in audiovisual speech perception. Front Psychol 2:238. doi:10.3389/fpsyg.2011.00238
Altieri N, Stevenson RA, Wallace MT, Wenger MJ (2013) Learning to associate auditory and visual stimuli: behavioral and neural mechanisms. Brain Topogr. doi:10.1007/s10548-013-0333-7
Andersen RA, Musallam S, Pesaran B (2004a) Selecting the signals for a brain-machine interface. Curr Opin Neurobiol 14(6):720–726. doi:10.1016/j.conb.2004.10.005
Andersen TS, Tiippana K, Sams M (2004b) Factors influencing audiovisual fission and fusion illusions. Brain Res Cogn Brain Res 21(3):301–308. doi:10.1016/j.cogbrainres.2004.06.004
Angelaki DE, Gu Y, DeAngelis GC (2011) Visual and vestibular cue integration for heading perception in extrastriate visual cortex. J Physiol 589(4):825–833
Asano E, Juhasz C, Shah A, Muzik O, Chugani DC, Shah J, Sood S, Chugani HT (2005) Origin and propagation of epileptic spasms delineated on electrocorticography. Epilepsia 46(7):1086–1097. doi:10.1111/j.1528-1167.2005.05205.x
Ashby FG (1982) Testing the assumptions of exponential, additive reaction time models. Mem Cogn 10:125–134
Ashby FG, Townsend JT (1986) Varieties of perceptual independence. Psychol Rev 93(2):154–179
Barth DS, Goldberg N, Brett B, Di S (1995) The spatiotemporal organization of auditory, visual, and auditory-visual evoked potentials in rat cortex. Brain Res 678(1–2):177–190
Baum SH, Martin RC, Hamilton AC, Beauchamp MS (2012) Multisensory speech perception without the left superior temporal sulcus. NeuroImage. doi:10.1016/j.neuroimage.2012.05.034
Beauchamp MS (2005) Statistical criteria in FMRI studies of multisensory integration. Neuroinformatics 3(2):93–113
Beauchamp MS, Argall BD, Bodurka J, Duyn JH, Martin A (2004a) Unraveling multisensory integration: patchy organization within human STS multisensory cortex. Nat Neurosci 7(11):1190–1192
Beauchamp MS, Lee KE, Argall BD, Martin A (2004b) Integration of auditory and visual information about objects in superior temporal sulcus. Neuron 41(5):809–823
Beauchamp MS, Nath AR, Pasalar S (2010) fMRI-guided transcranial magnetic stimulation reveals that the superior temporal sulcus is a cortical locus of the McGurk effect. J Neurosci 30(7):2414–2417. doi:10.1523/JNEUROSCI.4865-09.2010
Bell AH, Corneil BD, Munoz DP, Meredith MA (2003) Engagement of visual fixation suppresses sensory responsiveness and multisensory integration in the primate superior colliculus. Eur J Neurosci 18(10):2867–2873
Bell AH, Fecteau JH, Munoz DP (2004) Using auditory and visual stimuli to investigate the behavioral and neuronal consequences of reflexive covert orienting. J Neurophysiol 91(5):2172–2184
Bell AH, Meredith MA, Van Opstal AJ, Munoz DP (2005) Crossmodal integration in the primate superior colliculus underlying the preparation and initiation of saccadic eye movements. J Neurophysiol 93(6):3659–3673
Berens P, Keliris GA, Ecker AS, Logothetis NK, Tolias AS (2008a) Comparing the feature selectivity of the gamma-band of the local field potential and the underlying spiking activity in primate visual cortex. Front Syst Neurosci 2:2. doi:10.3389/neuro.06.002.2008
Berens P, Keliris GA, Ecker AS, Logothetis NK, Tolias AS (2008b) Feature selectivity of the gamma-band of the local field potential in primate primary visual cortex. Front Neurosci 2(2):199–207. doi:10.3389/neuro.01.037.2008
Berens P, Logothetis NK, Tolias AS (2013) Local field potentials, BOLD and spiking activity–relationships and physiological mechanisms. Nature 2:67
Berman AL (1961) Interaction of cortical responses to somatic and auditory stimuli in anterior ectosylvian gyrus of cat. J Neurophysiol 24:608–620
Bertelson P (1998) Starting from the ventriloquist: The perception of multimodal events. In: Sabourin M, Craik FIM, Robert M (eds) Advances in psychological science, vol 2., Biological and cognitive aspectsPsychological Press, Hove, pp 419–439
Bertelson P, Radeau M (1981) Cross-modal bias and perceptual fusion with auditory-visual spatial discordance. Percept Psychophys 29(6):578–584
Besle J, Fort A, Giard M (2004) Interest and Validity of the additive model in electrophysiological studies of multisensory interactions. Cogn Process 5:189–192
Besle J, Fischer C, Bidet-Caulet A, Lecaignard F, Bertrand O, Giard MH (2008) Visual activation and audiovisual interactions in the auditory cortex during speech perception: intracranial recordings in humans. J Neurosci 28(52):14301–14310. doi:10.1523/JNEUROSCI.2875-08.2008
Besle J, Bertrand O, Giard MH (2009) Electrophysiological (EEG, sEEG, MEG) evidence for multiple audiovisual interactions in the human auditory cortex. Hear Res 258:143–151. doi:10.1016/j.heares.2009.06.016
Bizley JK, King AJ (2008) Visual-auditory spatial processing in auditory cortical neurons. Brain Res 1242:24–36. doi:10.1016/j.brainres.2008.02.087
Bolognini N, Convento S, Rossetti A, Merabet LB (2013) Multisensory processing after a brain damage: clues on post-injury crossmodal plasticity from neuropsychology. Neurosci Biobehav Rev 37(3):269–278
Boyden ES (2011) Optogenetics: using light to control the brain. Cerebrum 2011:16
Boynton GM, Engel SA, Glover GH, Heeger DJ (1996) Linear systems analysis of functional magnetic resonance imaging in human V1. J Neurosci 16(13):4207–4221
Bradley DC, Chang GC, Andersen RA (1998) Encoding of three-dimensional structure-from-motion by primate area MT neurons. Nature 392(6677):714–717. doi:10.1038/33688
Brecht M, Singer W, Engel AK (1999) Patterns of synchronization in the superior colliculus of anesthetized cats. J Neurosci 19(9):3567–3579
Britten KH, Shadlen MN, Newsome WT, Movshon JA (1992) The analysis of visual motion: a comparison of neuronal and psychophysical performance. J Neurosci 12(12):4745–4765
Britten KH, Newsome WT, Shadlen MN, Celebrini S, Movshon JA (1996) A relationship between behavioral choice and the visual responses of neurons in macaque MT. Visual Neurosci 13(1):87–100
Burnett LR, Stein BE, Chaponis D, Wallace MT (2004) Superior colliculus lesions preferentially disrupt multisensory orientation. Neuroscience 124(3):535–547. doi:10.1016/j.neuroscience.2003.12.026
Burnett LR, Stein BE, Perrault TJ Jr, Wallace MT (2007) Excitotoxic lesions of the superior colliculus preferentially impact multisensory neurons and multisensory integration. Exp Brain Res Experimentelle Hirnforschung 179(2):325–338. doi:10.1007/s00221-006-0789-8
Burton H, Sinclair RJ, Hong SY, Pruett JR Jr, Whang KC (1997) Tactile-spatial and cross-modal attention effects in the second somatosensory and 7b cortical areas of rhesus monkeys. Somatosens Mot Res 14(4):237–267
Buzsaki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304(5679):1926–1929. doi:10.1126/science.1099745
Calvert GA, Thesen T (2004) Multisensory integration: methodological approaches and emerging principles in the human brain. Journal of physiology, Paris 98(1–3):191–205
Calvert GA, Hansen PC, Iversen SD, Brammer MJ (2001) Detection of audio-visual integration sites in humans by application of electrophysiological criteria to the BOLD effect. NeuroImage 14(2):427–438
Calvert GA, Spence C, Stein BE (2004) The handbook of multisensory processes. MIT, Cambridge
Cappe C, Murray MM, Barone P, Rouiller EM (2010) Multisensory facilitation of behavior in monkeys: effects of stimulus intensity. J Cogn Neurosci 22(12):2850–2863. doi:10.1162/jocn.2010.21423
Cappe C, Thelen T, Romei V, Thut G, Murray MM (2012) Looming signals reveal synergistic principles of multisensory integration. J Neurosci 32(4):1171–1182. doi:10.1523/JNEUROSCI.5517-11.2012
Carriere BN, Royal DW, Perrault TJ, Morrison SP, Vaughan JW, Stein BE, Wallace MT (2007) Visual deprivation alters the development of cortical multisensory integration. J Neurophysiol 98(5):2858–2867. doi:10.1152/jn.00587.2007
Churan J, Ilg UJ (2001) Processing of second-order motion stimuli in primate middle temporal area and medial superior temporal area. J Opt Soc Am A Opt Image Sci Vis 18(9):2297–2306
Colonius H, Diederich A, Steenken R (2009) Time-window-of-integration (TWIN) model for saccadic reaction time: effect of auditory masker level on visual-auditory spatial interaction in elevation. Brain Topogr 21(3–4):177–184. doi:10.1007/s10548-009-0091-8
Conrey B, Pisoni DB (2006) Auditory-visual speech perception and synchrony detection for speech and nonspeech signals. The Journal of the Acoustical Society of America 119(6):4065–4073
Corneil BD, Van Wanrooij M, Munoz DP, Van Opstal AJ (2002) Auditory-visual interactions subserving goal-directed saccades in a complex scene. J Neurophysiol 88(1):438–454
Dahmen JC, Keating P, Nodal FR, Schulz AL, King AJ (2010) Adaptation to stimulus statistics in the perception and neural representation of auditory space. Neuron 66(6):937–948. doi:10.1016/j.neuron.2010.05.018
Dale AM, Buckner RL (1997) Selective averaging of rapidly presented individual trials using fMRI. Hum Brain Mapp 5:329–340
David SV, Hayden BY, Mazer JA, Gallant JL (2008) Attention to stimulus features shifts spectral tuning of V4 neurons during natural vision. Neuron 59(3):509–521. doi:10.1016/j.neuron.2008.07.001
de Lafuente V, Romo R (2005) Neuronal correlates of subjective sensory experience. Nat Neurosci 8(12):1698–1703. doi:10.1038/nn1587
de Peralta Menendez RG, Andino SG, Lantz G, Michel CM, Landis T (2001) Noninvasive localization of electromagnetic epileptic activity. I. Method descriptions and simulations. Brain Topogr 14(2):131–137
de Peralta Grave, Menendez R, Murray MM, Michel CM, Martuzzi R, Gonzalez Andino SL (2004) Electrical neuroimaging based on biophysical constraints. NeuroImage 21(2):527–539. doi:10.1016/j.neuroimage.2003.09.051
Deisseroth K (2011) Optogenetics. Nat Methods 8(1):26–29. doi:10.1038/nmeth.f.324
Diederich A, Colonius H (2004) Bimodal and trimodal multisensory enhancement: effects of stimulus onset and intensity on reaction time. Percept Psychophys 66(8):1388–1404
Dixon NF, Spitz L (1980) The detection of auditory visual desynchrony. Perception 9(6):719–721
Dodd JV, Krug K, Cumming BG, Parker AJ (2001) Perceptually bistable three-dimensional figures evoke high choice probabilities in cortical area MT. J Neurosci 21(13):4809–4821
Donders FC (1868) Over de Snelheid van Psychische Processen. Onderzoekingen Gedaan in het Psychologisch Laboratorium der Utrechetsche Hoogeschool
Driver J, Noesselt T (2008) Multisensory interplay reveals crossmodal influences on ‘sensory-specific’ brain regions, neural responses, and judgments. Neuron 57(1):11–23
Einevoll GT, Kayser C, Logothetis NK, Panzeri S (2013) Modelling and analysis of local field potentials for studying the function of cortical circuits. Nat Rev Neurosci 14(11):770–785
Fenno L, Yizhar O, Deisseroth K (2011) The development and application of optogenetics. Annu Rev Neurosci 34:389–412. doi:10.1146/annurev-neuro-061010-113817
Fetsch CR, DeAngelis GC, Angelaki DE (2013) Bridging the gap between theories of sensory cue integration and the physiology of multisensory neurons. Nat Rev Neurosci 14(6):429–442
Foss-Feig JH, Kwakye LD, Cascio CJ, Burnette CP, Kadivar H, Stone WL, Wallace MT (2010) An extended multisensory temporal binding window in autism spectrum disorders. Exp Brain Res Experimentelle Hirnforschung 203(2):381–389. doi:10.1007/s00221-010-2240-4
Foxe JJ, Wylie GR, Martinez A, Schroeder CE, Javitt DC, Guilfoyle D, Ritter W, Murray MM (2002) Auditory-somatosensory multisensory processing in auditory association cortex: an fMRI study. J Neurophysiol 88(1):540–543
Frens MA, Van Opstal AJ (1998) Visual-auditory interactions modulate saccade-related activity in monkey superior colliculus. Brain Res Bull 46(3):211–224
Fries P (2005) A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci 9(10):474–480. doi:10.1016/j.tics.2005.08.011
Fries P, Reynolds JH, Rorie AE, Desimone R (2001) Modulation of oscillatory neuronal synchronization by selective visual attention. Science 291(5508):1560–1563. doi:10.1126/science.291.5508.1560
Gauthier J, Joober R, Mottron L, Laurent S, Fuchs M, De Kimpe V, Rouleau GA (2003) Mutation screening of FOXP2 in individuals diagnosed with autistic disorder. Am J Med Genet A 118A(2):172–175. doi:10.1002/ajmg.a.10105
Gerstein G, Bedenbaugh P, Aertsen AM (1989) Neuronal assemblies. IEEE Trans Biomed Eng 36(1):4–14
Ghazanfar AA, Maier JX, Hoffman KL, Logothetis NK (2005) Multisensory integration of dynamic faces and voices in rhesus monkey auditory cortex. J Neurosci 25(20):5004–5012. doi:10.1523/JNEUROSCI.0799-05.2005
Giard M, Besle J (2010) Methodological considerations: Electrophysiology of multisensory interactions in humans. In: Kaiser J, Naumer MJ (eds) Multisensory object perception in the primate brain. Springer, New York
Glover GH (1999) Deconvolution of impulse response in event-related BOLD fMRI. NeuroImage 9(4):416–429
Goense JB, Logothetis NK (2008) Neurophysiology of the BOLD fMRI signal in awake monkeys. Curr Biol 18(9):631–640. doi:10.1016/j.cub.2008.03.054
Gomez-Ramirez M, Kelly SP, Molholm S, Sehatpour P, Schwartz TH, Foxe JJ (2011) Oscillatory sensory selection mechanisms during intersensory attention to rhythmic auditory and visual inputs: a human electrocorticographic investigation. J Neurosci 31(50):18556–18567
Gondan M, Röder B (2006) A new method for detecting interactions between the senses in event-related potentials. Brain Res 1073–1074:389–397. doi:10.1016/j.brainres.2005.12.050
Gray CM, Maldonado PE, Wilson M, McNaughton B (1995) Tetrodes markedly improve the reliability and yield of multiple single-unit isolation from multi-unit recordings in cat striate cortex. J Neurosci Methods 63(1–2):43–54
Green DM, Swets JA (1966) Signal detection theory and psychophysics, vol 1974. Wiley, New York
Grill-Spector K, Malach R (2001) fMR-adaptation: a tool for studying the functional properties of human cortical neurons. Acta Psychol 107(1–3):293–321
Guido W, Lu SM, Vaughan JW, Godwin DW, Sherman SM (1995) Receiver operating characteristic (ROC) analysis of neurons in the cat’s lateral geniculate nucleus during tonic and burst response mode. Vis Neurosci 12(4):723–741
Hairston WD, Wallace MT, Vaughan JW, Stein BE, Norris JL, Schirillo JA (2003) Visual localization ability influences cross-modal bias. J Cogn Neurosci 15(1):20–29
Hairston WD, Burdette JH, Flowers DL, Wood FB, Wallace MT (2005) Altered temporal profile of visual-auditory multisensory interactions in dyslexia. Exp Brain Res Experimentelle Hirnforschung 166(3–4):474–480. doi:10.1007/s00221-005-2387-6
Hauthal N, Thorne JD, Debener S, Sandmann P (2013) Source localisation of visual evoked potentials in congenitally deaf individuals. Brain Topogr. doi:10.1007/s10548-013-0341-7
Heeger DJ, Ress D (2002) What does fMRI tell us about neuronal activity? Nat Rev 3(2):142–151. doi:10.1038/nrn730
Henze DA, Borhegyi Z, Csicsvari J, Mamiya A, Harris KD, Buzsaki G (2000) Intracellular features predicted by extracellular recordings in the hippocampus in vivo. J Neurophysiol 84(1):390–400
Hershenson M (1962) Reaction time as a measure of intersensory facilitation. J Exp Psychol 63:289–293
Hillyard SA, Teder-Salejarvi WA, Munte TF (1998) Temporal dynamics of early perceptual processing. Curr Opin Neurobiol 8(2):202–210
Iriki A, Tanaka M, Iwamura Y (1996) Coding of modified body schema during tool use by macaque postcentral neurones. NeuroReport 7(14):2325–2330
James TW, Stevenson RA (2012) The use of fMRI to assess multisensory integration. In: Wallace MH, Murray MM (eds) Frontiers in the neural basis of multisensory processes. Taylor & Francis, London
James TW, Kim S, Stevenson RA (2009) Assessing multisensory interaction with additive factors and functional MRI. In: The International Society for Psychophysics, Galway, Ireland, 2009
James TW, Stevenson RA, Kim S (2012) Inverse effectiveness in multisensory processing. In: Stein BE (ed) The new handbook of multisensory processes. MIT Press, Cambridge
Jenkins WM, Merzenich MM, Ochs MT, Allard T, Guic-Robles E (1990) Functional reorganization of primary somatosensory cortex in adult owl monkeys after behaviorally controlled tactile stimulation. J Neurophysiol 63(1):82–104
Jermakowicz WJ, Casagrande VA (2007) Neural networks a century after Cajal. Brain Res Rev 55(2):264–284. doi:10.1016/j.brainresrev.2007.06.003
Jiang W, Wallace MT, Jiang H, Vaughan JW, Stein BE (2001) Two cortical areas mediate multisensory integration in superior colliculus neurons. J Neurophysiol 85(2):506–522
Jiang W, Jiang H, Stein BE (2002) Two corticotectal areas facilitate multisensory orientation behavior. J Cogn Neurosci 14(8):1240–1255
Kajikawa Y, Schroeder CE (2011) How local is the local field potential? Neuron 72(5):847–858. doi:10.1016/j.neuron.2011.09.029
Katzner S, Nauhaus I, Benucci A, Bonin V, Ringach DL, Carandini M (2009) Local origin of field potentials in visual cortex. Neuron 61(1):35–41. doi:10.1016/j.neuron.2008.11.016
Kayser C, Petkov CI, Augath M, Logothetis NK (2005) Integration of touch and sound in auditory cortex. Neuron 48(2):373–384
Kayser C, Petkov CI, Augath M, Logothetis NK (2007) Functional imaging reveals visual modulation of specific fields in auditory cortex. J Neurosci 27(8):1824–1835. doi:10.1523/JNEUROSCI.4737-06.2007
Kayser C, Petkov CI, Logothetis NK (2008) Visual modulation of neurons in auditory cortex. Cereb Cortex 18(7):1560–1574. doi:10.1093/cercor/bhm187
Kayser C, Petkov CI, Logothetis NK (2009) Multisensory interactions in primate auditory cortex: fMRI and electrophysiology. Hear Res 258(1–2):80–88. doi:10.1016/j.heares.2009.02.011
Kim S, James TW (2010) Enhanced effectiveness in visuo-haptic object-selective brain regions with increasing stimulus salience. Hum Brain Mapp 31(5):678–693. doi:10.1002/hbm.20897
Kim S, Stevenson RA, James TW (2012) Visuo-haptic neuronal convergence demonstrated with an inversely effective pattern of BOLD activation. J Cogn Neurosci 24(4):830–842. doi:10.1162/jocn_a_00176
King AJ, Walker KM (2012) Integrating information from different senses in the auditory cortex. Biol Cybern 106(11–12):617–625. doi:10.1007/s00422-012-0502-x
Kinsella TJ, Trivette G, Rowland J, Sorace R, Miller R, Fraass B, Steinberg SM, Glatstein E, Sherins RJ (1989) Long-term follow-up of testicular function following radiation therapy for early-stage Hodgkin’s disease. J Clin Oncol 7(6):718–724
Koval MJ, Lomber SG, Everling S (2011) Prefrontal cortex deactivation in macaques alters activity in the superior colliculus and impairs voluntary control of saccades. J Neurosci 31(23):8659–8668. doi:10.1523/JNEUROSCI.1258-11.2011
Kreiman G, Hung CP, Kraskov A, Quiroga RQ, Poggio T, DiCarlo JJ (2006) Object selectivity of local field potentials and spikes in the macaque inferior temporal cortex. Neuron 49(3):433–445. doi:10.1016/j.neuron.2005.12.019
Lakatos P, Shah AS, Knuth KH, Ulbert I, Karmos G, Schroeder CE (2005) An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex. J Neurophysiol 94(3):1904–1911. doi:10.1152/jn.00263.2005
Lakatos P, Chen CM, O’Connell MN, Mills A, Schroeder CE (2007) Neuronal oscillations and multisensory interaction in primary auditory cortex. Neuron 53(2):279–292. doi:10.1016/j.neuron.2006.12.011
Lakatos P, Karmos G, Mehta AD, Ulbert I, Schroeder CE (2008) Entrainment of neuronal oscillations as a mechanism of attentional selection. Science 320(5872):110–113. doi:10.1126/science.1154735
Laurienti PJ, Perrault TJ, Stanford TR, Wallace MT, Stein BE (2005) On the use of superadditivity as a metric for characterizing multisensory integration in functional neuroimaging studies. Exp Brain Res Experimentelle Hirnforschung 166(3–4):289–297
Lee C, Rohrer WH, Sparks DL (1988) Population coding of saccadic eye movements by neurons in the superior colliculus. Nature 332(6162):357–360. doi:10.1038/332357a0
Leopold DA, Logothetis NK (1996) Activity changes in early visual cortex reflect monkeys’ percepts during binocular rivalry. Nature 379(6565):549–553
Li X, Basso MA (2005) Competitive stimulus interactions within single response fields of superior colliculus neurons. J Neurosci 25(49):11357–11373
Liu J, Newsome WT (2005) Correlation between speed perception and neural activity in the middle temporal visual area. J Neurosci 25(3):711–722. doi:10.1523/JNEUROSCI.4034-04.2005
Liu J, Newsome WT (2006) Local field potential in cortical area MT: stimulus tuning and behavioral correlations. J Neurosci 26(30):7779–7790
Logothetis NK (2003) The underpinnings of the BOLD functional magnetic resonance imaging signal. J Neurosci 23(10):3963–3971
Logothetis NK (2008) What we can do and what we cannot do with fMRI. Nature 453(7197):869–878. doi:10.1038/nature06976
Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412(6843):150–157
Lomber SG, Malhotra S (2008) Double dissociation of ‘what’ and ‘where’ processing in auditory cortex. Nat Neurosci 11(5):609–616. doi:10.1038/nn.2108
Lovelace CT, Stein BE, Wallace MT (2003) An irrelevant light enhances auditory detection in humans: a psychophysical analysis of multisensory integration in stimulus detection. Brain Res Cogn Brain Res 17(2):447–453
Luce RD (1959) Individual choice behavior: a theoretical analysis. Courier Dover Publications, New York
Macmillan NA, Creelman CD (2004) Detection theory: a user’s guide, 2nd edn. Psychology Press, USA
Magri C, Schridde U, Murayama Y, Panzeri S, Logothetis NK (2012) The amplitude and timing of the BOLD signal reflects the relationship between local field potential power at different frequencies. J Neurosci 32(4):1395–1407. doi:10.1523/JNEUROSCI.3985-11.2012
Maier A, Logothetis NK, Leopold DA (2007) Context-dependent perceptual modulation of single neurons in primate visual cortex. Proc Natl Acad Sci USA 104(13):5620–5625. doi:10.1073/pnas.0608489104
Malhotra S, Hall AJ, Lomber SG (2004) Cortical control of sound localization in the cat: unilateral cooling deactivation of 19 cerebral areas. J Neurophysiol 92(3):1625–1643. doi:10.1152/jn.01205.2003
Malhotra S, Stecker GC, Middlebrooks JC, Lomber SG (2008) Sound localization deficits during reversible deactivation of primary auditory cortex and/or the dorsal zone. J Neurophysiol 99(4):1628–1642. doi:10.1152/jn.01228.2007
Martuzzi R, Murray MM, Michel CM, Thiran J-P, Maeder PP, Clarke S, Meuli RA (2007) Multisensory interactions within human primary cortices revealed by BOLD dynamics. Cereb Cortex 17(7):1672–1679
Massaro DW (1987) Speech Perception by Ear and Eye. In: Dodd B, Campbell BA (eds) Hearing by eye: the psychology of lip reading. Lawrence Erlbaum Associates Ltd., London, pp 53–84
Massaro DW (2004) From Multisensory Integration to Talking Heads and Language Learning. In: Calvert G, Spence C, Stein BE (eds) The handbook of multisensory processes. MIT Press, Cambridge, pp 153–176
Matsuhashi M, Ikeda A, Ohara S, Matsumoto R, Yamamoto J, Takayama M, Satow T, Begum T, Usui K, Nagamine T, Mikuni N, Takahashi J, Miyamoto S, Fukuyama H, Shibasaki H (2004) Multisensory convergence at human temporo-parietal junction: epicortical recording of evoked responses. Clin Neurophysiol 115(5):1145–1160. doi:10.1016/j.clinph.2003.12.009
Mattis J, Tye KM, Ferenczi EA, Ramakrishnan C, O’Shea DJ, Prakash R, Gunaydin LA, Hyun M, Fenno LE, Gradinaru V, Yizhar O, Deisseroth K (2012) Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins. Nat Methods 9(2):159–172. doi:10.1038/nmeth.1808
McGurk H, MacDonald J (1976) Hearing lips and seeing voices. Nature 264(5588):746–748
Mercier MR, Foxe JJ, Fiebelkorn IC, Butler JS, Schwartz TH, Molholm S (2013) Auditory-driven phase reset in visual cortex: human electrocorticography reveals mechanisms of early multisensory integration. NeuroImage 79:19–29
Meredith MA, Stein BE (1983) Interactions among converging sensory inputs in the superior colliculus. Science 221(4608):389–391
Meredith MA, Stein BE (1985) Descending efferents from the superior colliculus relay integrated multisensory information. Science 227(4687):657–659
Meredith MA, Stein BE (1986a) Spatial factors determine the activity of multisensory neurons in cat superior colliculus. Brain Res 365(2):350–354
Meredith MA, Stein BE (1986b) Visual, auditory, and somatosensory convergence on cells in superior colliculus results in multisensory integration. J Neurophysiol 56(3):640–662
Meredith MA, Nemitz JW, Stein BE (1987) Determinants of multisensory integration in superior colliculus neurons. I. Temporal factors. J Neurosci 7(10):3215–3229
Merzenich MM, Nelson RJ, Kaas JH, Stryker MP, Jenkins WM, Zook JM, Cynader MS, Schoppmann A (1987) Variability in hand surface representations in areas 3b and 1 in adult owl and squirrel monkeys. J Comp Neurol 258(2):281–296. doi:10.1002/cne.902580208
Michel CM, Murray MM (2012) Towards the utilization of EEG as a brain imaging tool. NeuroImage 61(2):371–385. doi:10.1016/j.neuroimage.2011.12.039
Michel CM, Murray MM, Lantz G, Gonzalez S, Spinelli L, Grave de Peralta R (2004) EEG source imaging. Clin Neurophysiol 115(10):2195–2222. doi:10.1016/j.clinph.2004.06.001
Michel CM, Koenig T, Brandeis D, Gianotti LR, Wackermann J (2009) Electrical neuroimaging. Cambridge University Press, Cambridge
Miller J (1982) Divided attention: evidence for coactivation with redundant signals. Cognit Psychol 14(2):247–279
Miller J, Ulrich R, Lamarre Y (2001) Locus of the redundant-signals effect in bimodal divided attention: a neurophysiological analysis. Percept Psychophys 63(3):555–562
Mishra J, Martinez A, Hillyard SA (2008) Cortical processes underlying sound-induced flash fusion. Brain Res 1242:102–115. doi:10.1016/j.brainres.2008.05.023
Mitzdorf U (1985) Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiol Rev 65(1):37–100
Mitzdorf U (1987) Properties of the evoked potential generators: current source-density analysis of visually evoked potentials in the cat cortex. Int J Neurosci 33(1–2):33–59
Montemurro MA, Rasch MJ, Murayama Y, Logothetis NK, Panzeri S (2008) Phase-of-firing coding of natural visual stimuli in primary visual cortex. Curr Biol 18(5):375–380. doi:10.1016/j.cub.2008.02.023
Murray MM, Michel CM, Grave de Peralta R, Ortigue S, Brunet D, Andino SG, Schnider A (2004) Rapid discrimination of visual and multisensory memories revealed by electrical neuroimaging. NeuroImage 21(1):125–135
Murray MM, Molholm S, Michel CM, Heslenfeld DJ, Ritter W, Javitt DC, Schroeder CE, Foxe JJ (2005) Grabbing your ear: rapid auditory-somatosensory multisensory interactions in low-level sensory cortices are not constrained by stimulus alignment. Cereb Cortex 15(7):963–974. doi:10.1093/cercor/bhh197
Murray MM, Brunet D, Michel CM (2008) Topographic ERP analyses: a step-by-step tutorial review. Brain Topogr 20(4):249–264. doi:10.1007/s10548-008-0054-5
Nelson WT, Hettinger LJ, Cunningham JA, Brickman BJ, Haas MW, McKinley RL (1998) Effects of localized auditory information on visual target detection performance using a helmet-mounted display. Hum Factors 40(3):452–460
Niwa M, Johnson JS, O’Connor KN, Sutter ML (2012) Active engagement improves primary auditory cortical neurons’ ability to discriminate temporal modulation. J Neurosci 32(27):9323–9334. doi:10.1523/JNEUROSCI.5832-11.2012
O’Riordan MA (2004) Superior visual search in adults with autism. Autism 8(3):229–248. doi:10.1177/1362361304045219
O’Riordan M, Plaisted K (2001) Enhanced discrimination in autism. Q J Exp Psychol 54(4):961–979
Perkel DH, Gerstein GL, Moore GP (1967) Neuronal spike trains and stochastic point processes II. Simultaneous spike trains. Biophys J 7(4):419–440. doi:10.1016/S0006-3495(67)86597-4
Perrault TJ Jr, Vaughan JW, Stein BE, Wallace MT (2003) Neuron-specific response characteristics predict the magnitude of multisensory integration. J Neurophysiol 90(6):4022–4026. doi:10.1152/jn.00494.2003
Perrault TJ Jr, Vaughan JW, Stein BE, Wallace MT (2005) Superior colliculus neurons use distinct operational modes in the integration of multisensory stimuli. J Neurophysiol 93(5):2575–2586
Pesaran B, Musallam S, Andersen RA (2006) Cognitive neural prosthetics. Curr Biol 16(3):R77–80. doi:10.1016/j.cub.2006.01.043
Pettersen KH, Hagen E, Einevoll GT (2008) Estimation of population firing rates and current source densities from laminar electrode recordings. J Comput Neurosci 24(3):291–313
Pieters JPM (1983) Sternberg’s additive factor method and underlying psychological processes: some theoretical consideration. Psychol Bull 93:411–426
Pockett S, Purdy SC, Brennan BJ, Holmes MD (2013) Auditory click stimuli evoke event-related potentials in the visual cortex. NeuroReport 24(15):837–840
Powers AR 3rd, Hillock AR, Wallace MT (2009) Perceptual training narrows the temporal window of multisensory binding. J Neurosci 29(39):12265–12274. doi:10.1523/JNEUROSCI.3501-09.2009
Powers AR 3rd, Hevey MA, Wallace MT (2012) Neural correlates of multisensory perceptual learning. J Neurosci 32(18):6263–6274. doi:10.1523/JNEUROSCI.6138-11.2012
Price NS, Born RT (2010) Timescales of sensory- and decision-related activity in the middle temporal and medial superior temporal areas. J Neurosci 30(42):14036–14045. doi:10.1523/JNEUROSCI.2336-10.2010
Puce A, Epling JA, Thompson JC, Carrick OK (2007) Neural responses elicited to face motion and vocalization pairings. Neuropsychologia 45(1):93–106. doi:10.1016/j.neuropsychologia.2006.04.017
Raab DH (1962) Statistical facilitation of simple reaction times. Trans N Y Acad Sci 24:574–590
Radeau M (1994) Auditory-visual spatial interaction and modularity. Curr Psychol Cogn 13(1):3–51
Ramos-Estebanez C, Merabet LB, Machii K, Fregni F, Thut G, Wagner TA, Romei V, Amedi A, Pascual-Leone A (2007) Visual phosphene perception modulated by subthreshold crossmodal sensory stimulation. J Neurosci 27(15):4178–4181. doi:10.1523/JNEUROSCI.5468-06.2007
Rauch A, Rainer G, Logothetis NK (2008) The effect of a serotonin-induced dissociation between spiking and perisynaptic activity on BOLD functional MRI. Proc Natl Acad Sci USA 105(18):6759–6764. doi:10.1073/pnas.0800312105
Recanzone GH, Guard DC, Phan ML (2000a) Frequency and intensity response properties of single neurons in the auditory cortex of the behaving macaque monkey. J Neurophysiol 83(4):2315–2331
Recanzone GH, Guard DC, Phan ML, Su TK (2000b) Correlation between the activity of single auditory cortical neurons and sound-localization behavior in the macaque monkey. J Neurophysiol 83(5):2723–2739
Romei V, Murray MM, Merabet LB, Thut G (2007) Occipital transcranial magnetic stimulation has opposing effects on visual and auditory stimulus detection: implications for multisensory interactions. J Neurosci 27(43):11465–11472. doi:10.1523/JNEUROSCI.2827-07.2007
Romei V, Murray MM, Cappe C, Thut G (2009) Preperceptual and stimulus-selective enhancement of low-level human visual cortex excitability by sounds. Curr Biol 19(21):1799–1805. doi:10.1016/j.cub.2009.09.027
Romei V, Murray MM, Cappe C, Thut G (2013) The contributions of sensory dominance and attentional bias to cross-modal enhancement of visual cortex excitability. J Cogn Neurosci 25(7):1122–1135. doi:10.1162/jocn_a_00367
Romo R, Hernandez A, Zainos A, Salinas E (1998) Somatosensory discrimination based on cortical microstimulation. Nature 392(6674):387–390
Romo R, Hernandez A, Zainos A, Lemus L, Brody CD (2002) Neuronal correlates of decision-making in secondary somatosensory cortex. Nat Neurosci 5(11):1217–1225
Romo R, Hernandez A, Zainos A (2004) Neuronal correlates of a perceptual decision in ventral premotor cortex. Neuron 41(1):165–173
Royal DW, Carriere BN, Wallace MT (2009) Spatiotemporal architecture of cortical receptive fields and its impact on multisensory interactions. Exp Brain Res 198(2–3):127–136. doi:10.1007/s00221-009-1772-y
Sarko DK, Nidiffer AR, Powers AR, Ghose D, Fister MC, Hillock-Dunn A, Krueger J, Wallace MT (2012) Spatial and temporal features of multisensory processes: Bridging animal and human studies. In: Murray MM, Wallace MT (eds) Frontiers in the neural bases of multisensory processes. CRC Press, Boca Raton, pp 191–215
Schweickert R (1978) A critical path generalization of the additive factor method: analysis of a Stroop task. J Math Psychol 18:105–139
Shams L, Kamitani Y, Shimojo S (2000) Illusions. What you see is what you hear. Nature 408(6814):788
Shams L, Ma WJ, Beierholm U (2005) Sound-induced flash illusion as an optimal percept. NeuroReport 16(17):1923–1927
Singer W (1993) Neuronal representations, assemblies and temporal coherence. Prog Brain Res 95:461–474
Snyder LH, Dickinson AR, Calton JL (2006) Preparatory delay activity in the monkey parietal reach region predicts reach reaction times. J Neurosci 26(40):10091–10099. doi:10.1523/JNEUROSCI.0513-06.2006
Spence C, Driver J (2000) Attracting attention to the illusory location of a sound: reflexive crossmodal orienting and ventriloquism. NeuroReport 11(9):2057–2061
Sperdin HF, Cappe C, Murray MM (2010) The behavioral relevance of multisensory neural response interactions. Front Neurosci 3:9
Spierer L, Manuel AL, Bueti D, Murray MM (2013) Contributions of pitch and bandwidth to sound-induced enhancement of visual cortex excitability in humans. Cortex; a journal devoted to the study of the nervous system and behavior 49(10):2728–2734. doi:10.1016/j.cortex.2013.01.001
Stanford TR, Stein BE (2007) Superadditivity in multisensory integration: putting the computation in context. NeuroReport 18(8):787–792. doi:10.1097/WNR.0b013e3280c1e315
Stanford TR, Quessy S, Stein BE (2005) Evaluating the operations underlying multisensory integration in the cat superior colliculus. J Neurosci 25(28):6499–6508
Stein BE, Stanford TR (2008) Multisensory integration: current issues from the perspective of the single neuron. Nat Rev Neurosci 9(4):255–266. doi:10.1038/nrn2331
Stein BE, Wallace MT (1996) Comparisons of cross-modality integration in midbrain and cortex. Prog Brain Res 112:289–299
Stein BE, Huneycutt WS, Meredith MA (1988) Neurons and behavior: the same rules of multisensory integration apply. Brain Res 448(2):355–358
Steinmetz PN, Roy A, Fitzgerald PJ, Hsiao SS, Johnson KO, Niebur E (2000) Attention modulates synchronized neuronal firing in primate somatosensory cortex. Nature 404(6774):187–190
Stekelenburg JJ, Vroomen J (2007) Neural correlates of multisensory integration of ecologically valid audiovisual events. J Cogn Neurosci 19(12):1964–1973. doi:10.1162/jocn.2007.19.12.1964
Sternberg S (1969a) The discovery of processing stages: extensions of Donders’ method. Acta Psychol 30:276–315
Sternberg S (1969b) Memory-scanning: mental processes revealed by reaction-time experiments. Am Sci 57(4):421–457
Sternberg S (1975) Memory scanning: new findings and current controversies. Exp Pshychol 27:1–32
Sternberg S (1998) Discovering mental processing stages: The method of additive factors. In: Scarborough D, Sternberg S (eds) An invitation to cognitive science, vol 4., Methods, models, and conceptual issuesMIT Press, Cambridge, pp 739–811
Sternberg S (2001) Seperate modifiability, mental modules, and the use of pure and composite measures to reveal them. Acta Psychol 106:147–246
Stevenson RA, James TW (2009) Audiovisual integration in human superior temporal sulcus: inverse effectiveness and the neural processing of speech and object recognition. NeuroImage 44(3):1210–1223. doi:10.1016/j.neuroimage.2008.09.034
Stevenson RA, Wallace MT (2013) Multisensory temporal integration: task and stimulus dependencies. Exp Brain Res Experimentelle Hirnforschung Experimentation cerebrale 227(2):249–261. doi:10.1007/s00221-013-3507-3
Stevenson RA, Geoghegan ML, James TW (2007) Superadditive BOLD activation in superior temporal sulcus with threshold non-speech objects. Exp Brain Res 179(1):85–95
Stevenson RA, Kim S, James TW (2009) An additive-factors design to disambiguate neuronal and areal convergence: measuring multisensory interactions between audio, visual, and haptic sensory streams using fMRI. Exp Brain Res Experimentelle Hirnforschung 198(2–3):183–194. doi:10.1007/s00221-009-1783-8
Stevenson RA, Altieri NA, Kim S, Pisoni DB, James TW (2010) Neural processing of asynchronous audiovisual speech perception. NeuroImage 49(4):3308–3318. doi:10.1016/j.neuroimage.2009.12.001
Stevenson R, Bushmakin M, Kim S, Wallace M, Puce A, James T (2012a) Inverse effectiveness and multisensory interactions in visual event-related potentials with audiovisual speech. Brain Topogr 1:19. doi:10.1007/s10548-012-0220-7
Stevenson RA, Bushmakin M, Kim S, Wallace MT, Puce A, James TW (2012b) Inverse effectiveness and multisensory interactions in visual event-related potentials with audiovisual speech. Brain Topogr 25(3):308–326. doi:10.1007/s10548-012-0220-7
Stevenson RA, Zemtsov RK, Wallace MT (2012c) Individual differences in the multisensory temporal binding window predict susceptibility to audiovisual illusions. J Exp Psychol Hum Percept Perform. doi:10.1037/a0027339
Stevenson RA, Wilson MM, Powers AR, Wallace MT (2013) The effects of visual training on multisensory temporal processing. Exp Brain Res Experimentelle Hirnforschung Experimentation cerebrale 225(4):479–489. doi:10.1007/s00221-012-3387-y
Stevenson RA, Siemann JK, Schneider BC, Eberly HE, Woynaroski TG, Camarata SM, Wallace MT (2014) Multisensory temporal integration in autism spectrum disorders. J Neurosci 34(3):691–697. doi:10.1523/jneurosci.3615-13.2014
Takarae Y, Luna B, Minshew NJ, Sweeney JA (2008) Patterns of visual sensory and sensorimotor abnormalities in autism vary in relation to history of early language delay. J Int Neuropsychol Soc 14(6):980–989. doi:10.1017/S1355617708081277
Tal N, Amedi A (2009) Multisensory visual-tactile object related network in humans: insights gained using a novel crossmodal adaptation approach. Exp Brain Res Experimentelle Hirnforschung Experimentation cerebrale 198(2–3):165–182. doi:10.1007/s00221-009-1949-4
Talsma D, Woldorff MG (2005) Selective attention and multisensory integration: multiple phases of effects on the evoked brain activity. J Cogn Neurosci 17(7):1098–1114. doi:10.1162/0898929054475172
Taylor DA (1976) Stage analysis of reaction time. Psychol Bull 83:161–191
Taylor K, Mandon S, Freiwald WA, Kreiter AK (2005) Coherent oscillatory activity in monkey area v4 predicts successful allocation of attention. Cereb Cortex 15(9):1424–1437. doi:10.1093/cercor/bhi023
Teder-Salejarvi WA, McDonald JJ, Di Russo F, Hillyard SA (2002) An analysis of audio-visual crossmodal integration by means of event-related potential (ERP) recordings. Brain Res Cogn Brain Res 14(1):106–114
Thelen A, Cappe C, Murray MM (2012) Electrical neuroimaging of memory discrimination based on single-trial multisensory learning. NeuroImage 62(3):1478–1488. doi:10.1016/j.neuroimage.2012.05.027
Thiele A, Distler C, Hoffmann KP (1999) Decision-related activity in the macaque dorsal visual pathway. Eur J Neurosci 11(6):2044–2058
Thompson KG, Hanes DP, Bichot NP, Schall JD (1996) Perceptual and motor processing stages identified in the activity of macaque frontal eye field neurons during visual search. J Neurophysiol 76(6):4040–4055
Townsend JT (1984) Uncovering mental processes with factorial experiments. J Math Psychol 28(4):363–400
Townsend JT, Ashby FG (1978) Methods of modeling capacity in simple processing systems. Cogn Theory 3:200–239
Townsend JT, Ashby FG (1980) Decomposing the reaction time distribution: pure insertion and selective influence revisited. J Math Psychol 21:93–123
Townsend JT, Nozawa G (1995) Spatio-temporal properties of elementary perception: an investigation of parrallel, serial, and coactive theories. J Math Psychol 39:321–359
Townsend JT, Thomas RD (1994) Stochastic dependencies in parallel and serial models: effects on systems factorial interactions. J Math Psychol 38(1):1–34
Uka T, Sasaki R, Kumano H (2012) Change in choice-related response modulation in area MT during learning of a depth-discrimination task is consistent with task learning. J Neurosci 32(40):13689–13700. doi:10.1523/JNEUROSCI.4406-10.2012
Usrey WM, Reid RC (1999) Synchronous activity in the visual system. Annu Rev Physiol 61:435–456. doi:10.1146/annurev.physiol.61.1.435
Van Opstal AJ, Munoz DP (2004) Auditory-visual interactions subserving primate gaze orienting. In: Calvert GA, Spence C, Stein BE (eds) The handbook of multisensory processes. MIT Press, Cambridge, pp 373–394
Van Wanrooij MM, Bell AH, Munoz DP, Van Opstal AJ (2009) The effect of spatial-temporal audiovisual disparities on saccades in a complex scene. Exp Brain Res. doi:10.1007/s00221-009-1815-4
van Wassenhove V, Grant KW, Poeppel D (2007) Temporal window of integration in auditory-visual speech perception. Neuropsychologia 45(3):598–607. doi:10.1016/j.neuropsychologia.2006.01.001
Viswanathan A, Freeman RD (2007) Neurometabolic coupling in cerebral cortex reflects synaptic more than spiking activity. Nat Neurosci 10(10):1308–1312. doi:10.1038/nn1977
Vroomen J, Baart M (2009) Recalibration of phonetic categories by lipread speech: measuring aftereffects after a 24-hour delay. Lang Speech 52(Pt 2–3):341–350
Vroomen J, Keetels M (2010) Perception of intersensory synchrony: a tutorial review. Atten Percept Psychophys 72(4):871–884. doi:10.3758/APP.72.4.871
Vroomen J, Stekelenburg JJ (2010) Visual anticipatory information modulates multisensory interactions of artificial audiovisual stimuli. J Cogn Neurosci 22(7):1583–1596. doi:10.1162/jocn.2009.21308
Wallace MT, Meredith MA, Stein BE (1992) Integration of multiple sensory modalities in cat cortex. Exp Brain Res Experimentelle Hirnforschung Experimentation cerebrale 91(3):484–488
Wallace MT, Wilkinson LK, Stein BE (1996) Representation and integration of multiple sensory inputs in primate superior colliculus. J Neurophysiol 76(2):1246–1266
Wallace MT, Meredith MA, Stein BE (1998) Multisensory integration in the superior colliculus of the alert cat. J Neurophysiol 80(2):1006–1010
Wang Y, Celebrini S, Trotter Y, Barone P (2008) Visuo-auditory interactions in the primary visual cortex of the behaving monkey: electrophysiological evidence. BMC Neurosci 9:79. doi:10.1186/1471-2202-9-79
Wenger MJ, Townsend JT (2000) Basic response time tools for studying general processing capacity in attention, perception, and cognition. J Gen Psychol 127(1):67–99
Werner S, Noppeney U (2010) Superadditive responses in superior temporal sulcus predict audiovisual benefits in object categorization. Cereb Cortex 20(8):1829–1842. doi:10.1093/cercor/bhp248
Wilkinson LK, Meredith MA, Stein BE (1996) The role of anterior ectosylvian cortex in cross-modality orientation and approach behavior. Exp Brain Res 112(1):1–10
Xing D, Yeh CI, Shapley RM (2009) Spatial spread of the local field potential and its laminar variation in visual cortex. J Neurosci 29(37):11540–11549. doi:10.1523/JNEUROSCI.2573-09.2009
Yang T, Maunsell JH (2004) The effect of perceptual learning on neuronal responses in monkey visual area V4. J Neurosci 24(7):1617–1626
Yizhar O, Fenno L, Zhang F, Hegemann P, Diesseroth K (2011a) Microbial opsins: a family of single-component tools for optical control of neural activity. Cold Spring Harb Protoc 2011(3): top102
Yizhar O, Fenno LE, Davidson TJ, Mogri M, Deisseroth K (2011b) Optogenetics in neural systems. Neuron 71(1):9–34. doi:10.1016/j.neuron.2011.06.004
Zion Golumbic EM, Poeppel D, Schroeder CE (2012) Temporal context in speech processing and attentional stream selection: a behavioral and neural perspective. Brain Lang 122(3):151–161. doi:10.1016/j.bandl.2011.12.010
Zion Golumbic E, Cogan GB, Schroeder CE, Poeppel D (2013a) Visual input enhances selective speech envelope tracking in auditory cortex at a “cocktail party”. J Neurosci 33(4):1417–1426. doi:10.1523/JNEUROSCI.3675-12.2013
Zion Golumbic EM, Ding N, Bickel S, Lakatos P, Schevon CA, McKhann GM, Goodman RR, Emerson R, Mehta AD, Simon JZ, Poeppel D, Schroeder CE (2013b) Mechanisms underlying selective neuronal tracking of attended speech at a “cocktail party”. Neuron 77(5):980–991. doi:10.1016/j.neuron.2012.12.037
Acknowledgments
Funding for this work was provided by a Banting Postdoctoral Fellowship, It’s only a matter of time: Neural networks underlying multisensory perceptual binding, National Institutes of Health grant F32 DC011993, Multisensory Integration and Temporal Processing in ASD, a grant from the Vanderbilt Institute for Clinical and Translational Research, VICTR VR5807.1, Development and Modulation of Multisensory Integration, National Institutes of Health grant R34 DC010927, Evaluation of Sensory Integration Treatment in ASD, National Institutes of Health grant 5T32 MH018921-24, From Brain and Behavioral Science to Intervention, a Vanderbilt Kennedy Center MARI/Hobbs Award, the Vanderbilt Brain Institute, the Vanderbilt University Kennedy Center, the Idaho IDeA Network of Biomedical Research Excellence, and National Institutes of Health grants P20 RR016454 and P20 GM103408.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Stevenson, R.A., Ghose, D., Fister, J.K. et al. Identifying and Quantifying Multisensory Integration: A Tutorial Review. Brain Topogr 27, 707–730 (2014). https://doi.org/10.1007/s10548-014-0365-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10548-014-0365-7