A growing body of evidence indicates that mental calculation in adults is accompanied by horizontal attention shifts along a mental continuum representing the range of plausible answers. The fast deployment of spatial attention suggests a predictive role in guiding the search for the answer. The link between arithmetic and spatial functions is theoretically justified by the need to alleviate the cognitive load of mental calculation, but the question of how this link establishes during development gives rise to opposing views emphasizing either biological or cultural factors. The role of education, in particular, remains debated in the absence of data covering the period when children learn arithmetic. In this study, we measured gaze movements, as a proxy for attentional shifts, while first-grade elementary school children solved single-digit additions and subtractions. The investigation was scheduled only a few weeks after the formal teaching of symbolic subtraction to assess the role of spatial attention in early learning. Gaze patterns revealed horizontal– but not vertical– attentional shifts, with addition shifting the gaze more rightward than subtraction. The shift was observed as soon as the first operand and the operator were presented, corroborating the view that attention is used to predictively identify the portion of the numerical continuum where the answer is likely to be located, as adult studies suggested. The finding of a similar gaze pattern in adults and six-year-old children who have just learned how to subtract single digits challenges the idea that arithmetic problem solving requires intensive practice to be linked to spatial attention.