Skip to main content

Welkom bij Scalda & Bohn Stafleu van Loghum

Scalda heeft ervoor gezorgd dat je Mijn BSL eenvoudig en snel kunt raadplegen.Je kunt de producten hieronder links aanschaffen en rechts inloggen.

Registreer

Schaf de BSL Academy aan: 

BSL Academy mbo AG

Eenmaal aangeschaft kun je thuis, of waar ook ter wereld toegang krijgen tot Mijn BSL.

Heb je een vraag, neem dan contact op met Jan van der Velden.

Login

Als u al geregistreerd bent, hoeft u alleen maar in te loggen om onbeperkt toegang te krijgen tot Mijn BSL.

Top

2024 | OriginalPaper | Hoofdstuk

32. Future concepts of instrument design

Auteurs : Dr. Ir. Aimée Sakes, Prof. Dr. Ir. Paul Breedveld

Gepubliceerd in: The Technical Principles of Endoscopic Surgery

Uitgeverij: Bohn Stafleu van Loghum

share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Conventional medical devices are manufactured using standard techniques such as injection molding and CNC. Conventional instruments usually consist of many individual parts based on standard components, such as pulleys, that are used in other technical fields in much larger dimensions. Squeezing down these components into miniature dimensions and fitting everything together, requires elaborate manufacturing and assembly, increasing costs and limiting further size decrease. This chapter deals with the benefits of bio-inspiration, applying smart working principles from nature within innovative medical devices, combined with the incredible manufacturing possibilities of additive manufacturing or 3D printing, enabling the manufacture of prototypes that are much simpler and with higher functionality than conventional tools. The chapter also deals with the limitations of 3D printing at small dimensions, requiring new design approaches and clever ways to merge sterilization with the 3D printing process, to realize broad acceptance for use in the future OR.
Literatuur
1.
go back to reference Freschi C, Ferrari V, Melfi F, Ferrari M, Mosca F, Cuschieri A. Technical review of the da Vinci surgical telemanipulator. Int J Med Robot Comp Assist Surg. 2013;9(4):396–406.CrossRef Freschi C, Ferrari V, Melfi F, Ferrari M, Mosca F, Cuschieri A. Technical review of the da Vinci surgical telemanipulator. Int J Med Robot Comp Assist Surg. 2013;9(4):396–406.CrossRef
2.
go back to reference Van Leeuwen J, Kier WM. Functional design of tentacles in squid: linking sarcomere ultrastructure to gross morphological dynamics. Philos Trans R Soc Lond B Biol Sci. 1997;352(1353):551–71. Van Leeuwen J, Kier WM. Functional design of tentacles in squid: linking sarcomere ultrastructure to gross morphological dynamics. Philos Trans R Soc Lond B Biol Sci. 1997;352(1353):551–71.
3.
go back to reference Tack P, Victor J, Gemmel P, Annemans L. 3D-printing techniques in a medical setting: a systematic literature review. Biomed Eng Online. 2016;15(1):1–21.CrossRef Tack P, Victor J, Gemmel P, Annemans L. 3D-printing techniques in a medical setting: a systematic literature review. Biomed Eng Online. 2016;15(1):1–21.CrossRef
4.
go back to reference Kermavnar T, Shannon A, O’Sullivan KJ, McCarthy C, Dunne CP, O’Sullivan LW. Three-dimensional printing of medical devices used directly to treat patients: a systematic review. 3D Print Addit Manufactur. 2021;8(6):366–408. Kermavnar T, Shannon A, O’Sullivan KJ, McCarthy C, Dunne CP, O’Sullivan LW. Three-dimensional printing of medical devices used directly to treat patients: a systematic review. 3D Print Addit Manufactur. 2021;8(6):366–408.
5.
go back to reference Nuseir A, Hatamleh MMD, Alnazzawi A, Al‐Rabab’ah M, Kamel B, Jaradat E. Direct 3D printing of flexible nasal prosthesis: optimized digital workflow from scan to fit. J Prosthod. 2019;28(1):10–14. Nuseir A, Hatamleh MMD, Alnazzawi A, Al‐Rabab’ah M, Kamel B, Jaradat E. Direct 3D printing of flexible nasal prosthesis: optimized digital workflow from scan to fit. J Prosthod. 2019;28(1):10–14.
6.
go back to reference Culmone C, Smit G, Breedveld P. Additive manufacturing of medical instruments: a state-of-the-art review. Addit Manuf. 2019;27:461–73. Culmone C, Smit G, Breedveld P. Additive manufacturing of medical instruments: a state-of-the-art review. Addit Manuf. 2019;27:461–73.
7.
go back to reference Cuellar JS, Plettenburg D, Zadpoor AA, Breedveld P, Smit G. Design of a 3D-printed hand prosthesis featuring articulated bio-inspired fingers. Proc Inst Mech Eng [H]. 2021;235(3):336–45.CrossRef Cuellar JS, Plettenburg D, Zadpoor AA, Breedveld P, Smit G. Design of a 3D-printed hand prosthesis featuring articulated bio-inspired fingers. Proc Inst Mech Eng [H]. 2021;235(3):336–45.CrossRef
8.
go back to reference Kim Y, Cheng SS, Desai JP. Towards the development of a spring-based continuum robot for neurosurgery. Paper presented at the Medical Imaging 2015: image-guided procedures, robotic interventions, and modeling. 2015. Kim Y, Cheng SS, Desai JP. Towards the development of a spring-based continuum robot for neurosurgery. Paper presented at the Medical Imaging 2015: image-guided procedures, robotic interventions, and modeling. 2015.
9.
go back to reference Jelínek F, Breedveld P. Design for additive manufacture of fine medical instrumentation – DragonFlex case study. J Mech Design. 2015;137(11). Jelínek F, Breedveld P. Design for additive manufacture of fine medical instrumentation – DragonFlex case study. J Mech Design. 2015;137(11).
10.
go back to reference Jelínek F, Pessers R, Breedveld P. DragonFlex smart steerable laparoscopic instrument. J Med Dev. 2014;8(1). Jelínek F, Pessers R, Breedveld P. DragonFlex smart steerable laparoscopic instrument. J Med Dev. 2014;8(1).
11.
go back to reference Sakes A, Hovland K, Smit G, Geraedts J, Breedveld P. Design of a novel three-dimensional-printed two degrees-of-freedom steerable electrosurgical grasper for minimally invasive surgery. J Med Dev. 2018;12(1). Sakes A, Hovland K, Smit G, Geraedts J, Breedveld P. Design of a novel three-dimensional-printed two degrees-of-freedom steerable electrosurgical grasper for minimally invasive surgery. J Med Dev. 2018;12(1).
12.
go back to reference Culmone C, Henselmans PW, Van Starkenburg RI, Breedveld P. Exploring non-assembly 3D printing for novel compliant surgical devices. PLoS One. 2020;15(5): e0232952.CrossRefPubMedPubMedCentral Culmone C, Henselmans PW, Van Starkenburg RI, Breedveld P. Exploring non-assembly 3D printing for novel compliant surgical devices. PLoS One. 2020;15(5): e0232952.CrossRefPubMedPubMedCentral
13.
go back to reference Remes A, Williams D. Immune response in biocompatibility. The Biomaterials: Silver Jubilee Compendium, 79–91. Remes A, Williams D. Immune response in biocompatibility. The Biomaterials: Silver Jubilee Compendium, 79–91.
14.
go back to reference Anderson JM. Biological responses to materials. Annu Rev Mater Res. 2001;31(1):81–110.CrossRef Anderson JM. Biological responses to materials. Annu Rev Mater Res. 2001;31(1):81–110.CrossRef
15.
go back to reference Lussenburg K, Scali M, Sakes A, Breedveld P. Additive manufacturing of a miniature functional trocar for eye surgery. Front Med Technol. 2022;4: 842958.CrossRefPubMedPubMedCentral Lussenburg K, Scali M, Sakes A, Breedveld P. Additive manufacturing of a miniature functional trocar for eye surgery. Front Med Technol. 2022;4: 842958.CrossRefPubMedPubMedCentral
16.
go back to reference Alifui-Segbaya F, Varma S, Lieschke GJ, George R. Biocompatibility of photopolymers in 3D printing. 3D Print and Addit Manufactur. 2017;4(4):185–91. Alifui-Segbaya F, Varma S, Lieschke GJ, George R. Biocompatibility of photopolymers in 3D printing. 3D Print and Addit Manufactur. 2017;4(4):185–91.
17.
go back to reference Oskui SM, Diamante G, Liao C, Shi W, Gan J, Schlenk D, Grover WH. Assessing and reducing the toxicity of 3D-printed parts. Environ Sci Technol Lett. 2016;3(1):1–6.CrossRef Oskui SM, Diamante G, Liao C, Shi W, Gan J, Schlenk D, Grover WH. Assessing and reducing the toxicity of 3D-printed parts. Environ Sci Technol Lett. 2016;3(1):1–6.CrossRef
18.
go back to reference Rogers HB, Zhou LT, Kusuhara A, Zaniker E, Shafaie S, Owen BC, Woodruff TK. Dental resins used in 3D printing technologies release ovo-toxic leachates. Chemosphere. 2021;270: 129003.CrossRefPubMedPubMedCentral Rogers HB, Zhou LT, Kusuhara A, Zaniker E, Shafaie S, Owen BC, Woodruff TK. Dental resins used in 3D printing technologies release ovo-toxic leachates. Chemosphere. 2021;270: 129003.CrossRefPubMedPubMedCentral
20.
go back to reference Broeders IAMJ, Kalisingh SS. Handboek endoscopische chirurgie. Houten: Bohn Stafleu van Loghum; 2009. Broeders IAMJ, Kalisingh SS. Handboek endoscopische chirurgie. Houten: Bohn Stafleu van Loghum; 2009.
Metagegevens
Titel
Future concepts of instrument design
Auteurs
Dr. Ir. Aimée Sakes
Prof. Dr. Ir. Paul Breedveld
Copyright
2024
Uitgeverij
Bohn Stafleu van Loghum
DOI
https://doi.org/10.1007/978-90-368-2905-2_32