Skip to main content

Welkom bij Scalda & Bohn Stafleu van Loghum

Scalda heeft ervoor gezorgd dat je Mijn BSL eenvoudig en snel kunt raadplegen.Je kunt de producten hieronder links aanschaffen en rechts inloggen.

Registreer

Schaf de BSL Academy aan: 

BSL Academy mbo AG

Eenmaal aangeschaft kun je thuis, of waar ook ter wereld toegang krijgen tot Mijn BSL.

Heb je een vraag, neem dan contact op met Jan van der Velden.

Login

Als u al geregistreerd bent, hoeft u alleen maar in te loggen om onbeperkt toegang te krijgen tot Mijn BSL.

Top
Gepubliceerd in:

08-01-2025

Bayesian item response theory to estimate power in clinical trials with patient-reported outcomes as endpoints

Auteurs: Xiaohang Mei, Joseph C. Cappelleri, Jinxiang Hu

Gepubliceerd in: Quality of Life Research | Uitgave 4/2025

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Purpose

Patient-Reported Outcomes (PROs) are widely used in clinical trials, epidemiological research, quality of life (QOL) studies, routine clinical care, and medical surveillance. The Patient Reported Outcomes Measurement Information System (PROMIS) is a system of reliable and standardized measures of PROs developed with Item Response Theory (IRT) using latent scores. Power estimation is critical to clinical trials and research designs. However, in clinical trials with PROs as endpoints, observed scores are often used to calculate power rather than latent scores.

Methods

In this paper, we conducted a series of simulations to compare the power obtained with IRT latent scores, including Bayesian IRT, Frequentist IRT, and observed scores, focusing on small sample size common in pilot studies and Phase I/II trials. Taking the PROMIS depression measures as an example, we simulated data and estimated power for two-armed clinical trials manipulating the following factors: sample size, effect size, and number of items. We also examined how misspecification of effect size affected power estimation.

Results

Our results showed that the Bayesian IRT, which incorporated prior information into latent score estimation, yielded the highest power, especially when sample size was small. The effect of misspecification diminished as sample size increased.

Conclusion

For power estimation in two-armed clinical trials with standardized PRO endpoints, if a medium effect size or larger is expected, we recommend BIRT simulation with well-grounded informative priors and a total sample size of at least 40.
Bijlagen
Alleen toegankelijk voor geautoriseerde gebruikers
Literatuur
1.
go back to reference Food, U., & Administration, D. (2009). Guidance for industry: patient-reported outcome measures: use in medical product development to support labeling claims. Fed Regist, 65132. Food, U., & Administration, D. (2009). Guidance for industry: patient-reported outcome measures: use in medical product development to support labeling claims. Fed Regist, 65132.
2.
go back to reference Lohr, K. N., & Zebrack, B. J. (2009). Using patient-reported outcomes in clinical practice: Challenges and opportunities. Quality of Life Research, 18, 99–107.CrossRefPubMed Lohr, K. N., & Zebrack, B. J. (2009). Using patient-reported outcomes in clinical practice: Challenges and opportunities. Quality of Life Research, 18, 99–107.CrossRefPubMed
3.
go back to reference Rothman, M. L., Beltran, P., Cappelleri, J. C., Lipscomb, J., & Teschendorf, B. (2007). Patient-reported outcomes: Conceptual issues. Value in Health, 10, S66–S75.CrossRefPubMed Rothman, M. L., Beltran, P., Cappelleri, J. C., Lipscomb, J., & Teschendorf, B. (2007). Patient-reported outcomes: Conceptual issues. Value in Health, 10, S66–S75.CrossRefPubMed
5.
go back to reference Julious, S. A., George, S., Machin, D., & Stephens, R. J. (1997). Sample sizes for randomized trials measuring quality of life in cancer patients. Quality of Life Research, 6, 109-117CrossRefPubMed Julious, S. A., George, S., Machin, D., & Stephens, R. J. (1997). Sample sizes for randomized trials measuring quality of life in cancer patients. Quality of Life Research, 6, 109-117CrossRefPubMed
6.
go back to reference Pilkonis, P. A., Choi, S. W., Reise, S. P., Stover, A. M., Riley, W. T., & Cella, D. (2011). Item banks for measuring emotional distress from the Patient-Reported Outcomes Measurement Information System (PROMIS®): Depression, anxiety, and anger. Assessment, 18(3), 263–283.CrossRefPubMedPubMedCentral Pilkonis, P. A., Choi, S. W., Reise, S. P., Stover, A. M., Riley, W. T., & Cella, D. (2011). Item banks for measuring emotional distress from the Patient-Reported Outcomes Measurement Information System (PROMIS®): Depression, anxiety, and anger. Assessment, 18(3), 263–283.CrossRefPubMedPubMedCentral
7.
go back to reference Nicklin, J., Cramp, F., Kirwan, J., Urban, M., & Hewlett, S. (2010). Collaboration with patients in the design of patient-reported outcome measures: Capturing the experience of fatigue in rheumatoid arthritis. Arthritis Care & Research, 62(11), 1552–1558.CrossRef Nicklin, J., Cramp, F., Kirwan, J., Urban, M., & Hewlett, S. (2010). Collaboration with patients in the design of patient-reported outcome measures: Capturing the experience of fatigue in rheumatoid arthritis. Arthritis Care & Research, 62(11), 1552–1558.CrossRef
8.
go back to reference Gotay, C. C., Kawamoto, C. T., Bottomley, A., & Efficace, F. (2008). The prognostic significance of patient-reported outcomes in cancer clinical trials. Journal of Clinical Oncology, 26(8), 1355–1363.CrossRefPubMed Gotay, C. C., Kawamoto, C. T., Bottomley, A., & Efficace, F. (2008). The prognostic significance of patient-reported outcomes in cancer clinical trials. Journal of Clinical Oncology, 26(8), 1355–1363.CrossRefPubMed
10.
go back to reference Broderick, J. E., DeWitt, E. M., Rothrock, N., Crane, P. K., & Forrest, C. B. (2013). Advances in patient-reported outcomes: The NIH PROMIS® measures. Egems, 1(1). Broderick, J. E., DeWitt, E. M., Rothrock, N., Crane, P. K., & Forrest, C. B. (2013). Advances in patient-reported outcomes: The NIH PROMIS® measures. Egems, 1(1).
11.
go back to reference Spiegel, B. M., Hays, R. D., Bolus, R., Melmed, G. Y., Chang, L., Whitman, C., Khanna, P. P., Paz, S. H., Hays, T., & Reise, S. (2014). Development of the NIH patient-reported outcomes measurement information system (PROMIS) gastrointestinal symptom scales. The American Journal of Gastroenterology, 109(11), 1804.CrossRefPubMedPubMedCentral Spiegel, B. M., Hays, R. D., Bolus, R., Melmed, G. Y., Chang, L., Whitman, C., Khanna, P. P., Paz, S. H., Hays, T., & Reise, S. (2014). Development of the NIH patient-reported outcomes measurement information system (PROMIS) gastrointestinal symptom scales. The American Journal of Gastroenterology, 109(11), 1804.CrossRefPubMedPubMedCentral
12.
go back to reference Cella, D., Beaumont, J. L., Webster, K. A., Lai, J.-S., & Elting, L. (2006). Measuring the concerns of cancer patients with low platelet counts: The Functional Assessment of Cancer Therapy-Thrombocytopenia (FACT-Th) questionnaire. Supportive Care in Cancer, 14, 1220–1231.CrossRefPubMed Cella, D., Beaumont, J. L., Webster, K. A., Lai, J.-S., & Elting, L. (2006). Measuring the concerns of cancer patients with low platelet counts: The Functional Assessment of Cancer Therapy-Thrombocytopenia (FACT-Th) questionnaire. Supportive Care in Cancer, 14, 1220–1231.CrossRefPubMed
13.
go back to reference Garcia, S. F., Cella, D., Clauser, S. B., Flynn, K. E., Lad, T., Lai, J.-S., Reeve, B. B., Smith, A. W., Stone, A. A., & Weinfurt, K. (2007). Standardizing patient-reported outcomes assessment in cancer clinical trials: A patient-reported outcomes measurement information system initiative. Journal of Clinical Oncology, 25(32), 5106–5112.CrossRefPubMed Garcia, S. F., Cella, D., Clauser, S. B., Flynn, K. E., Lad, T., Lai, J.-S., Reeve, B. B., Smith, A. W., Stone, A. A., & Weinfurt, K. (2007). Standardizing patient-reported outcomes assessment in cancer clinical trials: A patient-reported outcomes measurement information system initiative. Journal of Clinical Oncology, 25(32), 5106–5112.CrossRefPubMed
14.
go back to reference Frost, M. H., Reeve, B. B., Liepa, A. M., Stauffer, J. W., & Hays, R. D. (2007). What is sufficient evidence for the reliability and validity of patient-reported outcome measures? Value in Health, 10, S94–S105.CrossRefPubMed Frost, M. H., Reeve, B. B., Liepa, A. M., Stauffer, J. W., & Hays, R. D. (2007). What is sufficient evidence for the reliability and validity of patient-reported outcome measures? Value in Health, 10, S94–S105.CrossRefPubMed
15.
go back to reference Tunis, S. R., Stryer, D. B., & Clancy, C. M. (2003). Practical clinical trials: Increasing the value of clinical research for decision making in clinical and health policy. JAMA, 290(12), 1624–1632.CrossRefPubMed Tunis, S. R., Stryer, D. B., & Clancy, C. M. (2003). Practical clinical trials: Increasing the value of clinical research for decision making in clinical and health policy. JAMA, 290(12), 1624–1632.CrossRefPubMed
16.
go back to reference Edelen, M. O., & Reeve, B. B. (2007). Applying item response theory (IRT) modeling to questionnaire development, evaluation, and refinement. Quality of Life Research, 16, 5–18.CrossRefPubMed Edelen, M. O., & Reeve, B. B. (2007). Applying item response theory (IRT) modeling to questionnaire development, evaluation, and refinement. Quality of Life Research, 16, 5–18.CrossRefPubMed
17.
go back to reference Bjorner, J., Petersen, M. A., Groenvold, M., Aaronson, N., Ahlner-Elmqvist, M., Arraras, J., Brédart, A., Fayers, P., Jordhoy, M., & Sprangers, M. (2004). Use of item response theory to develop a shortened version of the EORTC QLQ-C30 emotional functioning scale. Quality of Life Research, 13, 1683–1697.CrossRefPubMed Bjorner, J., Petersen, M. A., Groenvold, M., Aaronson, N., Ahlner-Elmqvist, M., Arraras, J., Brédart, A., Fayers, P., Jordhoy, M., & Sprangers, M. (2004). Use of item response theory to develop a shortened version of the EORTC QLQ-C30 emotional functioning scale. Quality of Life Research, 13, 1683–1697.CrossRefPubMed
18.
go back to reference Van Der Linden, W. J., & Hambleton, R. K. (1997). Item response theory: Brief history, common models, and extensions. In Handbook of modern item response theory (pp. 1–28). Springer. Van Der Linden, W. J., & Hambleton, R. K. (1997). Item response theory: Brief history, common models, and extensions. In Handbook of modern item response theory (pp. 1–28). Springer.
19.
go back to reference Reise, S. P., & Waller, N. G. (2009). Item response theory and clinical measurement. Annual Review of Clinical Psychology, 5, 27–48.CrossRefPubMed Reise, S. P., & Waller, N. G. (2009). Item response theory and clinical measurement. Annual Review of Clinical Psychology, 5, 27–48.CrossRefPubMed
20.
go back to reference Norman, G. (2010). Likert scales, levels of measurement and the “laws” of statistics. Advances in Health Sciences Education, 15, 625–632.CrossRefPubMed Norman, G. (2010). Likert scales, levels of measurement and the “laws” of statistics. Advances in Health Sciences Education, 15, 625–632.CrossRefPubMed
21.
go back to reference An, X., & Yung, Y.-F. (2014). Item response theory: What it is and how you can use the IRT procedure to apply it. SAS Institute Inc. SAS364-2014, 10(4), 1–14. An, X., & Yung, Y.-F. (2014). Item response theory: What it is and how you can use the IRT procedure to apply it. SAS Institute Inc. SAS364-2014, 10(4), 1–14.
22.
go back to reference Holman, R., Glas, C. A., & de Haan, R. J. (2003). Power analysis in randomized clinical trials based on item response theory. Controlled Clinical Trials, 24(4), 390–410.CrossRefPubMed Holman, R., Glas, C. A., & de Haan, R. J. (2003). Power analysis in randomized clinical trials based on item response theory. Controlled Clinical Trials, 24(4), 390–410.CrossRefPubMed
23.
go back to reference Thissen, D., & Steinberg, L. (2009). Item response theory. The Sage Handbook of Quantitative Methods in Psychology, 148–177. Thissen, D., & Steinberg, L. (2009). Item response theory. The Sage Handbook of Quantitative Methods in Psychology, 148–177.
24.
go back to reference Kean, J., & Reilly, J. (2014). Item response theory. In Hammond, F. M., Malec, J. M., Nick, T. G., & Buschbacher, R. M. (Eds.), Handbook for clinical research: Design, statistics and implementation (pp. 195–198). Kean, J., & Reilly, J. (2014). Item response theory. In Hammond, F. M., Malec, J. M., Nick, T. G., & Buschbacher, R. M. (Eds.), Handbook for clinical research: Design, statistics and implementation (pp. 195–198).
25.
go back to reference Nguyen, T. H., Han, H.-R., Kim, M. T., & Chan, K. S. (2014). An introduction to item response theory for patient-reported outcome measurement. Patient-Patient-Centered Outcomes Research, 7, 23–35.CrossRefPubMed Nguyen, T. H., Han, H.-R., Kim, M. T., & Chan, K. S. (2014). An introduction to item response theory for patient-reported outcome measurement. Patient-Patient-Centered Outcomes Research, 7, 23–35.CrossRefPubMed
26.
go back to reference Kohli, N., Koran, J., & Henn, L. (2015). Relationships among classical test theory and item response theory frameworks via factor analytic models. Educational and Psychological Measurement, 75(3), 389–405.CrossRefPubMed Kohli, N., Koran, J., & Henn, L. (2015). Relationships among classical test theory and item response theory frameworks via factor analytic models. Educational and Psychological Measurement, 75(3), 389–405.CrossRefPubMed
27.
go back to reference Bock, R. D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm. Psychometrika, 46(4), 443–459.CrossRef Bock, R. D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm. Psychometrika, 46(4), 443–459.CrossRef
28.
go back to reference Bock, R. D., Gibbons, R., & Muraki, E. (1988). Full-information item factor analysis. Applied Psychological Measurement, 12(3), 261–280.CrossRef Bock, R. D., Gibbons, R., & Muraki, E. (1988). Full-information item factor analysis. Applied Psychological Measurement, 12(3), 261–280.CrossRef
29.
go back to reference Lord, F. M. (1986). Maximum likelihood and Bayesian parameter estimation in item response theory. Journal of Educational Measurement, 157–162. Lord, F. M. (1986). Maximum likelihood and Bayesian parameter estimation in item response theory. Journal of Educational Measurement, 157–162.
30.
go back to reference Fox, J.-P. (2010). Bayesian item response modeling: Theory and applications. Springer. Fox, J.-P. (2010). Bayesian item response modeling: Theory and applications. Springer.
31.
go back to reference Finch, H., & French, B. F. (2019). A comparison of estimation techniques for IRT models with small samples. Applied Measurement in Education, 32(2), 77–96.CrossRef Finch, H., & French, B. F. (2019). A comparison of estimation techniques for IRT models with small samples. Applied Measurement in Education, 32(2), 77–96.CrossRef
32.
go back to reference Samejima, F. (1969). Estimation of latent ability using a response pattern of graded scores. Psychometric Society, 34, 1–97.CrossRef Samejima, F. (1969). Estimation of latent ability using a response pattern of graded scores. Psychometric Society, 34, 1–97.CrossRef
33.
go back to reference Samejima, F. (1997). Graded response model. In Handbook of modern item response theory (pp. 85–100). Springer. Samejima, F. (1997). Graded response model. In Handbook of modern item response theory (pp. 85–100). Springer.
34.
go back to reference Embretson, S. E., & Reise, S. P. (2013). Item response theory. Psychology Press.CrossRef Embretson, S. E., & Reise, S. P. (2013). Item response theory. Psychology Press.CrossRef
35.
go back to reference Lameijer, C., Van Bruggen, S., Haan, E., Van Deurzen, D., Van der Elst, K., Stouten, V., Kaat, A., Roorda, L., & Terwee, C. (2020). Graded response model fit, measurement invariance and (comparative) precision of the Dutch-Flemish PROMIS® Upper Extremity V2.0 item bank in patients with upper extremity disorders. BMC Musculoskeletal Disorders, 21(1), 1–17.CrossRef Lameijer, C., Van Bruggen, S., Haan, E., Van Deurzen, D., Van der Elst, K., Stouten, V., Kaat, A., Roorda, L., & Terwee, C. (2020). Graded response model fit, measurement invariance and (comparative) precision of the Dutch-Flemish PROMIS® Upper Extremity V2.0 item bank in patients with upper extremity disorders. BMC Musculoskeletal Disorders, 21(1), 1–17.CrossRef
36.
go back to reference Luo, Y., & Jiao, H. (2018). Using the Stan program for Bayesian item response theory. Educational and Psychological Measurement, 78(3), 384–408.CrossRefPubMed Luo, Y., & Jiao, H. (2018). Using the Stan program for Bayesian item response theory. Educational and Psychological Measurement, 78(3), 384–408.CrossRefPubMed
38.
go back to reference Team, S. D. (2020). RStan: The R interface to Stan. R package version 2.17. 3. Team, S. D. (2020). RStan: The R interface to Stan. R package version 2.17. 3.
39.
go back to reference Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., Brubaker, M. A., Guo, J., Li, P., & Riddell, A. (2017). Stan: A probabilistic programming language. Journal of Statistical Software, 76. Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., Brubaker, M. A., Guo, J., Li, P., & Riddell, A. (2017). Stan: A probabilistic programming language. Journal of Statistical Software, 76.
40.
go back to reference Vehtari, A., Gelman, A., Simpson, D., Carpenter, B., & Bürkner, P.-C. (2021). Rank-normalization, folding, and localization: An improved R ̂ for assessing convergence of MCMC (with discussion). Bayesian Analysis, 16(2), 667–718.CrossRef Vehtari, A., Gelman, A., Simpson, D., Carpenter, B., & Bürkner, P.-C. (2021). Rank-normalization, folding, and localization: An improved R ̂ for assessing convergence of MCMC (with discussion). Bayesian Analysis, 16(2), 667–718.CrossRef
41.
go back to reference Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7(4), 457–472.CrossRef Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7(4), 457–472.CrossRef
43.
go back to reference Ree, M. J., & Carretta, T. R. (2006). The role of measurement error in familiar statistics. Organizational Research Methods, 9(1), 99–112.CrossRef Ree, M. J., & Carretta, T. R. (2006). The role of measurement error in familiar statistics. Organizational Research Methods, 9(1), 99–112.CrossRef
44.
go back to reference McNeish, D. (2016). On using Bayesian methods to address small sample problems. Structural Equation Modeling: A Multidisciplinary Journal, 23(5), 750–773.CrossRef McNeish, D. (2016). On using Bayesian methods to address small sample problems. Structural Equation Modeling: A Multidisciplinary Journal, 23(5), 750–773.CrossRef
45.
go back to reference Chalmers, R. P. (2012). mirt: A multidimensional item response theory package for the R environment. Journal of Statistical Software, 48, 1–29.CrossRef Chalmers, R. P. (2012). mirt: A multidimensional item response theory package for the R environment. Journal of Statistical Software, 48, 1–29.CrossRef
47.
go back to reference Murray, J. V., Goldizen, A. W., O’Leary, R. A., McAlpine, C. A., Possingham, H. P., & Choy, S. L. (2009). How useful is expert opinion for predicting the distribution of a species within and beyond the region of expertise? A case study using brush-tailed rock-wallabies Petrogale penicillata. Journal of Applied Ecology, 46(4), 842–851.CrossRef Murray, J. V., Goldizen, A. W., O’Leary, R. A., McAlpine, C. A., Possingham, H. P., & Choy, S. L. (2009). How useful is expert opinion for predicting the distribution of a species within and beyond the region of expertise? A case study using brush-tailed rock-wallabies Petrogale penicillata. Journal of Applied Ecology, 46(4), 842–851.CrossRef
48.
go back to reference Martin, T. G., Burgman, M. A., Fidler, F., Kuhnert, P. M., Low-Choy, S., McBride, M., & Mengersen, K. (2012). Eliciting expert knowledge in conservation science. Conservation Biology, 26(1), 29–38.CrossRefPubMed Martin, T. G., Burgman, M. A., Fidler, F., Kuhnert, P. M., Low-Choy, S., McBride, M., & Mengersen, K. (2012). Eliciting expert knowledge in conservation science. Conservation Biology, 26(1), 29–38.CrossRefPubMed
49.
go back to reference Morris, W. K., Vesk, P. A., McCarthy, M. A., Bunyavejchewin, S., & Baker, P. J. (2015). The neglected tool in the Bayesian ecologist’s shed: A case study testing informative priors’ effect on model accuracy. Ecology and Evolution, 5(1), 102–108.CrossRefPubMed Morris, W. K., Vesk, P. A., McCarthy, M. A., Bunyavejchewin, S., & Baker, P. J. (2015). The neglected tool in the Bayesian ecologist’s shed: A case study testing informative priors’ effect on model accuracy. Ecology and Evolution, 5(1), 102–108.CrossRefPubMed
50.
go back to reference Hu, J., Thompson, J., Mudaranthakam, D. P., Hinton, L. C., Streeter, D., Park, M., Terluin, B., & Gajewski, B. (2022). Estimating power for clinical trials with patient reported outcomes-using item response theory. Journal of Clinical Epidemiology, 141, 141–148.CrossRefPubMed Hu, J., Thompson, J., Mudaranthakam, D. P., Hinton, L. C., Streeter, D., Park, M., Terluin, B., & Gajewski, B. (2022). Estimating power for clinical trials with patient reported outcomes-using item response theory. Journal of Clinical Epidemiology, 141, 141–148.CrossRefPubMed
51.
go back to reference Doostfatemeh, M., Ayatollah, S. M. T., & Jafari, P. (2016). Power and sample size calculations in clinical trials with patient-reported outcomes under equal and unequal group sizes based on graded response model: A simulation study. Value in Health, 19(5), 639–647.CrossRefPubMed Doostfatemeh, M., Ayatollah, S. M. T., & Jafari, P. (2016). Power and sample size calculations in clinical trials with patient-reported outcomes under equal and unequal group sizes based on graded response model: A simulation study. Value in Health, 19(5), 639–647.CrossRefPubMed
52.
go back to reference You, H. (2022). Bayesian versus frequentist estimation for item response theory models of interdisciplinary science assessment. Interdisciplinary Journal of Environmental and Science Education, 18(4), e2297.CrossRef You, H. (2022). Bayesian versus frequentist estimation for item response theory models of interdisciplinary science assessment. Interdisciplinary Journal of Environmental and Science Education, 18(4), e2297.CrossRef
53.
go back to reference Chen, D.-G., & Fraser, M. W. (2017). A Bayesian approach to sample size estimation and the decision to continue program development in intervention research. Journal of the Society for Social Work and Research, 8(3), 457–470.CrossRef Chen, D.-G., & Fraser, M. W. (2017). A Bayesian approach to sample size estimation and the decision to continue program development in intervention research. Journal of the Society for Social Work and Research, 8(3), 457–470.CrossRef
54.
go back to reference Zondervan-Zwijnenburg, M., Depaoli, S., Peeters, M., & Van De Schoot, R. (2018). Pushing the limits. Methodology. Zondervan-Zwijnenburg, M., Depaoli, S., Peeters, M., & Van De Schoot, R. (2018). Pushing the limits. Methodology.
Metagegevens
Titel
Bayesian item response theory to estimate power in clinical trials with patient-reported outcomes as endpoints
Auteurs
Xiaohang Mei
Joseph C. Cappelleri
Jinxiang Hu
Publicatiedatum
08-01-2025
Uitgeverij
Springer International Publishing
Gepubliceerd in
Quality of Life Research / Uitgave 4/2025
Print ISSN: 0962-9343
Elektronisch ISSN: 1573-2649
DOI
https://doi.org/10.1007/s11136-024-03874-y